Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Neuron ; 110(7): 1240-1257.e8, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35120628

RESUMO

Predictive coding is an important candidate theory of self-supervised learning in the brain. Its central idea is that sensory responses result from comparisons between bottom-up inputs and contextual predictions, a process in which rates and synchronization may play distinct roles. We recorded from awake macaque V1 and developed a technique to quantify stimulus predictability for natural images based on self-supervised, generative neural networks. We find that neuronal firing rates were mainly modulated by the contextual predictability of higher-order image features, which correlated strongly with human perceptual similarity judgments. By contrast, V1 gamma (γ)-synchronization increased monotonically with the contextual predictability of low-level image features and emerged exclusively for larger stimuli. Consequently, γ-synchronization was induced by natural images that are highly compressible and low-dimensional. Natural stimuli with low predictability induced prominent, late-onset beta (ß)-synchronization, likely reflecting cortical feedback. Our findings reveal distinct roles of synchronization and firing rates in the predictive coding of natural images.


Assuntos
Córtex Visual , Animais , Sincronização Cortical , Macaca , Redes Neurais de Computação , Neurônios/fisiologia , Córtex Visual/fisiologia
3.
Cereb Cortex ; 30(9): 4871-4881, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32350517

RESUMO

In order for organisms to survive, they need to detect rewarding stimuli, for example, food or a mate, in a complex environment with many competing stimuli. These rewarding stimuli should be detected even if they are nonsalient or irrelevant to the current goal. The value-driven theory of attentional selection proposes that this detection takes place through reward-associated stimuli automatically engaging attentional mechanisms. But how this is achieved in the brain is not very well understood. Here, we investigate the effect of differential reward on the multiunit activity in visual area V4 of monkeys performing a perceptual judgment task. Surprisingly, instead of finding reward-related increases in neural responses to the perceptual target, we observed a large suppression at the onset of the reward indicating cues. Therefore, while previous research showed that reward increases neural activity, here we report a decrease. More suppression was caused by cues associated with higher reward than with lower reward, although neither cue was informative about the perceptually correct choice. This finding of reward-associated neural suppression further highlights normalization as a general cortical mechanism and is consistent with predictions of the value-driven attention theory.


Assuntos
Atenção/fisiologia , Sinais (Psicologia) , Recompensa , Córtex Visual/fisiologia , Animais , Macaca mulatta , Masculino , Estimulação Luminosa
4.
J Neural Eng ; 17(2): 026036, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32217819

RESUMO

OBJECTIVE: The analysis of interactions among local populations of neurons in the cerebral cortex (e.g. within cortical microcolumns) requires high resolution and high channel count recordings from chronically implanted laminar microelectrode arrays. The request for high-density recordings of a large number of recording sites can presently only be accomplished by probes realized using complementary metal-oxide-semiconductor (CMOS) technology. In preparation for their use in non-human primates, we aimed for neural probe validation in a head-fixed approach analyzing the long-term recording capability. APPROACH: We examined chronically implanted silicon-based laminar probes, realized using a CMOS technology in combination with micromachining, to record from the primary visual cortex (V1) of a monkey. We used a passive CMOS probe that had 128 electrodes arranged at a pitch of 22.5 µm in four columns and 32 rows on a slender shank. In order to validate the performance of a dedicated microdrive, the overall dimensions of probe and interface boards were chosen to be compatible with the final active CMOS probe comprising integrated circuitry. MAIN RESULTS: Using the passive probe, we recorded simultaneously local field potentials (LFP) and spiking multiunit activity (MUA) in V1 of an awake behaving macaque monkey. We found that an insertion through the dura and subsequent readjustments of the chronically implanted neural probe was possible and allowed us to record stable LFPs for more than five months. The quality of MUA degraded within the first month but remained sufficiently high to permit mapping of receptive fields during the full recording period. SIGNIFICANCE: We conclude that the passive silicon probe enables semi-chronic recordings of high quality of LFP and MUA for a time span exceeding five months. The new microdrive compatible with a commercial recording chamber successfully demonstrated the readjustment of the probe position while the implemented plug structure effectively reduced brain tissue movement relative to the probe.


Assuntos
Macaca , Silício , Animais , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Microeletrodos , Neurônios
5.
Curr Biol ; 28(15): 2377-2387.e5, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30017481

RESUMO

Growing evidence suggests that distributed spatial attention may invoke theta (3-9 Hz) rhythmic sampling processes. The neuronal basis of such attentional sampling is, however, not fully understood. Here we show using array recordings in visual cortical area V4 of two awake macaques that presenting separate visual stimuli to the excitatory center and suppressive surround of neuronal receptive fields (RFs) elicits rhythmic multi-unit activity (MUA) at 3-6 Hz. This neuronal rhythm did not depend on small fixational eye movements. In the context of a distributed spatial attention task, during which the monkeys detected a spatially and temporally uncertain target, reaction times (RTs) exhibited similar rhythmic fluctuations. RTs were fast or slow depending on the target occurrence during high or low MUA, resulting in rhythmic MUA-RT cross-correlations at theta frequencies. These findings show that theta rhythmic neuronal activity can arise from competitive RF interactions and that this rhythm may result in rhythmic RTs potentially subserving attentional sampling.


Assuntos
Atenção/fisiologia , Macaca mulatta/fisiologia , Tempo de Reação/fisiologia , Transmissão Sináptica/fisiologia , Ritmo Teta/fisiologia , Córtex Visual/fisiologia , Animais , Masculino , Neurônios/fisiologia , Estimulação Luminosa , Vigília
6.
Sci Rep ; 7(1): 6431, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743958

RESUMO

Spatial attention allows us to make more accurate decisions about events in our environment. Decision confidence is thought to be intimately linked to the decision making process as confidence ratings are tightly coupled to decision accuracy. While both spatial attention and decision confidence have been subjected to extensive research, surprisingly little is known about the interaction between these two processes. Since attention increases performance it might be expected that confidence would also increase. However, two studies investigating the effects of endogenous attention on decision confidence found contradictory results. Here we investigated the effects of two distinct forms of spatial attention on decision confidence; endogenous attention and exogenous attention. We used an orientation-matching task, comparing the two attention conditions (endogenous and exogenous) to a control condition without directed attention. Participants performed better under both attention conditions than in the control condition. Higher confidence ratings than the control condition were found under endogenous attention but not under exogenous attention. This finding suggests that while attention can increase confidence ratings, it must be voluntarily deployed for this increase to take place. We discuss possible implications of this relative overconfidence found only during endogenous attention with respect to the theoretical background of decision confidence.


Assuntos
Atenção , Tomada de Decisões , Adulto , Sinais (Psicologia) , Movimentos Oculares , Feminino , Humanos , Masculino , Experimentação Humana não Terapêutica , Orientação
7.
Sci Rep ; 6: 34886, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721468

RESUMO

A fundamental property of brain function is that the spiking activity of cortical neurons is variable and that some of this variability is correlated between neurons. Correlated activity not due to the stimulus arises from shared input but the neuronal circuit mechanisms that result in these noise correlations are not fully understood. Here we tested in the visual system if correlated variability in mid-level area V4 of visual cortex is altered following extensive lesions of primary visual cortex (V1). To this end we recorded longitudinally the neuronal correlations in area V4 of two behaving macaque monkeys before and after a V1 lesion while the monkeys fixated a grey screen. We found that the correlations of neuronal activity survived the lesions in both monkeys. In one monkey, the correlation of multi-unit spiking signals was strongly increased in the first week post-lesion, while in the second monkey, correlated activity was slightly increased, but not greater than some week-by-week fluctuations observed. The typical drop-off of inter-neuronal correlations with cortical distance was preserved after the lesion. Therefore, as V4 noise correlations remain without feedforward input from V1, these results suggest instead that local and/or feedback input seem to be necessary for correlated activity.


Assuntos
Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Macaca mulatta , Monitorização Neurofisiológica/métodos , Estimulação Luminosa
8.
Neuron ; 90(1): 143-51, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27021172

RESUMO

Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain.


Assuntos
Corpos Geniculados/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Estimulação Elétrica , Corpos Geniculados/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Vias Neurais/fisiologia , Optogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA