Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; 24(2)2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37614891

RESUMO

Communicating science effectively is an essential part of the development of science literacy. Research has shown that introducing primary scientific literature through journal clubs can improve student learning outcomes, including increased scientific knowledge. However, without scaffolding, students can miss more complex aspects of science literacy, including how to analyze and present scientific data. In this study, we apply a modified CREATE(S) process (Concept map the introduction, Read methods and results, Elucidate hypotheses, Analyze data, Think of the next Experiment, and Synthesis map) to improve students' science literacy skills, specifically their understanding of the process of science and their ability to use narrative synthesis to communicate science. We tested this hypothesis using a retrospective quasi-experimental study design in upper-division undergraduate courses. We compared learning outcomes for CREATES intervention students to those for students who took the same courses before CREATES was introduced. Rubric-guided, direct evidence assessments were used to measure student gains in learning outcomes. Analyses revealed that CREATES intervention students versus the comparison group demonstrated improved ability to interpret and communicate primary literature, especially in the methods, hypotheses, and narrative synthesis learning outcome categories. Through a mixed-methods analysis of a reflection assignment completed by the CREATES intervention group, students reported the synthesis map as the most frequently used step in the process and highly valuable to their learning. Taken together, the study demonstrates how this modified CREATES process can foster scientific literacy development and how it could be applied in science, technology, engineering, and math journal clubs.

2.
CBE Life Sci Educ ; 20(4): ar62, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34846919

RESUMO

Calculus is typically one of the first college courses encountered by science, technology, engineering, and mathematics (STEM) majors. Calculus often presents major challenges affecting STEM student persistence, particularly for students from groups historically underrepresented in STEM. For life sciences majors, calculus courses may not offer content that is relevant to biological systems or connect with students' interests in biology. We developed a transformative approach to teaching college-level math, using a dynamical systems perspective that focuses first on demonstrating why students need math to understand living systems, followed by providing quantitative and computational skills, including concepts from calculus, that students need to build and analyze mathematical models representing these systems. We found that students who complete these new math courses perform better in subsequent science courses than their counterparts who take traditional calculus courses. We also provide evidence that the new math curriculum positively impacts students' academic performance, with data that show narrowing of the achievement gap, based on students' math grades, between student subgroups in the new math courses. Moreover, our results indicate that students' interest in the concepts and skills critical to the quantitative preparation of 21st-century life sciences majors increases after completing the new contextualized math curriculum.


Assuntos
Disciplinas das Ciências Biológicas , Currículo , Matemática/educação , Estudantes , Humanos , Universidades
3.
Artigo em Inglês | MEDLINE | ID: mdl-33884088

RESUMO

The COVID-19 pandemic forced an unprecedented shift to remote instruction across higher education, reducing access to critically important undergraduate research experience and potentially magnifying inequities faced by first-generation and underrepresented minority (URM) students in higher education. Through a novel course-based undergraduate research experience (CURE) at UCLA, delivered completely online, results of a unique, student-generated survey showed that the transition to remote learning was challenging for all students, increasing student workload, decreasing ability to focus on school, and limiting their ability to succeed. However, results showed significant disparities in remote learning that disproportionately impacted URM and first-generation students. These students had significantly greater expectations to help siblings with remote learning,; URM and first-generation students also suffered greater economic and food insecurity related to COVID-19. At the same time, this study demonstrates how student voices in survey development provide novel and actionable insights. While access to CUREs is often limited by laboratory space, by focusing on the research process, rather than specific laboratory skills, this study provides a scalable pedagogical model for remote undergraduate research experiences. Importantly, this model fostered student engagement and increased interest in further undergraduate research, including topics not directly related to the subject of this study, suggesting that online CUREs can be effective and impactful.

4.
Front Microbiol ; 11: 584699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123113

RESUMO

Improvements in high-throughput sequencing makes targeted amplicon analysis an ideal method for the study of human and environmental microbiomes by undergraduates. Multiple bioinformatics programs are available to process and interpret raw microbial diversity datasets, and the choice of programs to use in curricula is largely determined by student learning goals. Many of the most commonly used microbiome bioinformatics platforms offer end-to-end data processing and data analysis using a command line interface (CLI), but the downside for novice microbiome researchers is the steep learning curve often required. Alternatively, some sequencing providers include processing of raw data and taxonomy assignments as part of their pipelines. This, when coupled with available web-based or graphical user interface (GUI) analysis and visualization tools, eliminates the need for students or instructors to have extensive CLI experience. However, lack of universal data formats can make integration of these tools challenging. For example, tools for upstream and downstream analyses frequently use multiple different data formats which then require writing custom scripts or hours of manual work to make the files compatible. Here, we describe a microbial ecology bioinformatics curriculum that focuses on data analysis, visualization, and statistical reasoning by taking advantage of existing web-based and GUI tools. We created the Program for Unifying Microbiome Analysis Applications (PUMAA), which solves the problem of inconsistent files by formatting the output files from several raw data processing programs to seamlessly transition to a suite of GUI programs for analysis and visualization of microbiome taxonomic and inferred functional profiles. Additionally, we created a series of tutorials to accompany each of the microbiome analysis curricular modules. From pre- and post-course surveys, students in this curriculum self-reported conceptual and confidence gains in bioinformatics and data analysis skills. Students also demonstrated gains in biologically relevant statistical reasoning based on rubric-guided evaluations of open-ended survey questions and the Statistical Reasoning in Biology Concept Inventory. The PUMAA program and associated analysis tutorials enable students and researchers with no computational experience to effectively analyze real microbiome datasets to investigate real-world research questions.

5.
Int J STEM Educ ; 7(1): 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32647597

RESUMO

BACKGROUND: As higher education institutions strive to effectively support an increasingly diverse student body, they will be called upon to provide their faculty with tools to teach more inclusively, especially in science, technology, engineering, and mathematics (STEM) classrooms where recruitment and retention of students from underrepresented and disadvantaged groups present long-standing challenges. Pedagogical training approaches to creating inclusive classrooms involve interventions that raise awareness of student and instructor social identities and explore barriers to learning, such as implicit bias, microaggressions, stereotype threat, and fixed mindset. Such efforts should focus on embracing diversity as an asset leveraged to benefit all students in their learning. In this paper, we describe the impact of multiday, off-campus immersion workshops designed to impart faculty with these tools. Based on analysis of workshop participant data, we report the resulting changes in faculty knowledge of factors affecting classroom climate and student success in STEM, attitudes about students, and motivation to adopt new teaching practices aimed at fostering equitable and culturally responsive learning environments. RESULTS: Key findings indicate that attendees (1) increased their knowledge of social identities and the barriers to learning in STEM classrooms, particularly those faced by students from underrepresented groups in STEM or socioeconomically challenged backgrounds; (2) changed their attitudes about students' abilities as science majors, shifting away from a fixed-mindset perspective in which characteristics, such as intelligence, are perceived as innate and unalterable; and (3) modified their teaching approaches to promote inclusivity and cultural responsiveness. CONCLUSION: Faculty members, who are linchpins in the evolution of college classrooms into settings that provide students with equitable opportunities to succeed academically in STEM, can benefit from participating in immersion workshops structured to support their awareness of issues affecting classroom culture related to race/ethnicity, LGBTQ status, religious affiliation, ability, socioeconomic status, and other social identities that contribute to disparities in STEM achievement and persistence.

6.
CBE Life Sci Educ ; 18(4): ar55, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675279

RESUMO

Our study identified online lecture video styles that improved student engagement and satisfaction, while maintaining high learning outcomes in online education. We presented different lecture video styles with standardized material to students and then measured learning outcomes and satisfaction with a survey and summative assessment. We created an iterative qualitative coding scheme, "coding online asynchronous lectures" (COAL), to analyze open-ended student survey responses. Our results reveal that multimedia learning can be satisfying and effective. Students have strong preferences for certain video styles despite their equal learning outcomes, with the Learning Glass style receiving the highest satisfaction ratings. Video styles that were described as impersonal and unfamiliar were rated poorly, while those that were described as personal and engaging and evoked positive affective responses were rated highly. The students in our study rated lecture video styles that aligned with Mayer's multimedia learning principles as highly satisfying, indicating that student feedback can be a valuable resource for course designers to consider as they design their own online courses. Finally, we provide guidelines for creating engaging, effective, and satisfying asynchronous lecture videos to support establishment of best practices in online instruction.


Assuntos
Educação a Distância , Aprendizagem , Satisfação Pessoal , Estudantes , Gravação em Vídeo , Feminino , Humanos , Inquéritos e Questionários
7.
CBE Life Sci Educ ; 17(3): ar40, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30040529

RESUMO

We sought to test a hypothesis that systemic blind spots in active learning are a barrier both for instructors-who cannot see what every student is actually thinking on each concept in each class-and for students-who often cannot tell precisely whether their thinking is right or wrong, let alone exactly how to fix it. We tested a strategy for eliminating these blind spots by having students answer open-ended, conceptual problems using a Web-based platform, and measured the effects on student attrition, engagement, and performance. In 4 years of testing both in class and using an online platform, this approach revealed (and provided specific resolution lessons for) more than 200 distinct conceptual errors, dramatically increased average student engagement, and reduced student attrition by approximately fourfold compared with the original lecture course format (down from 48.3% to 11.4%), especially for women undergraduates (down from 73.1% to 7.4%). Median exam scores increased from 53% to 72-80%, and the bottom half of students boosted their scores to the range in which the top half had scored before the pedagogical switch. By contrast, in our control year with the same active-learning content (but without this "zero blind spots" approach), these gains were not observed.


Assuntos
Desempenho Acadêmico , Biologia Computacional/educação , Currículo , Aprendizagem Baseada em Problemas , Estudantes , Avaliação Educacional , Feminino , Humanos , Masculino
8.
J Microbiol Biol Educ ; 16(2): 186-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26751568

RESUMO

This four-year study describes the assessment of a bifurcated laboratory curriculum designed to provide upper-division undergraduate majors in two life science departments meaningful exposure to authentic research. The timing is critical as it provides a pathway for both directly admitted and transfer students to enter research. To fulfill their degree requirements, all majors complete one of two paths in the laboratory program. One path immerses students in scientific discovery experienced through team research projects (course-based undergraduate research experiences, or CUREs) and the other path through a mentored, independent research project (apprentice-based research experiences, or AREs). The bifurcated laboratory curriculum was structured using backwards design to help all students, irrespective of path, achieve specific learning outcomes. Over 1,000 undergraduates enrolled in the curriculum. Self-report survey results indicate that there were no significant differences in affective gains by path. Students conveyed which aspects of the curriculum were critical to their learning and development of research-oriented skills. Students' interests in biology increased upon completion of the curriculum, inspiring a subset of CURE participants to subsequently pursue further research. A rubric-guided performance evaluation, employed to directly measure learning, revealed differences in learning gains for CURE versus ARE participants, with evidence suggesting a CURE can reduce the achievement gap between high-performing students and their peers.

9.
Biochem Mol Biol Educ ; 41(1): 24-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382123

RESUMO

This study used a mixed methods approach to evaluate hybrid peer-assisted learning approaches incorporated into a bioinformatics tutorial for a genome annotation research project. Quantitative and qualitative data were collected from undergraduates who enrolled in a research-based laboratory course during two different academic terms at UCLA. Findings indicate that a critical feature of the peer-assisted learning approach is to have near-peer leaders with genome annotation experience, allowing them to communicate technical and conceptual aspects of the process in the context of a research project (a.k.a., the "big picture"). These characteristics are important for creating connections between the wet lab experiments and the computer lab activities, engendering excitement about the research project and fostering engagement in bioinformatics as a discipline. Likewise, it is essential to couple tutorial training in genome annotation with appropriate instructional materials, providing detailed, step-by-step instructions for database navigation. Finally, the assessment results support this hybrid peer-assisted learning approach as a model for undergraduates to successfully learn bioinformatics in a course setting.


Assuntos
Biologia Computacional/educação , Aprendizagem , Grupo Associado , Bases de Dados Factuais , Estudos de Avaliação como Assunto , Feminino , Grupos Focais , Humanos , Masculino , Estudantes , Ensino/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA