Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Data ; 11(1): 432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693191

RESUMO

The genus Clostridium is a large and diverse group within the Bacillota (formerly Firmicutes), whose members can encode useful complex traits such as solvent production, gas-fermentation, and lignocellulose breakdown. We describe 270 genome sequences of solventogenic clostridia from a comprehensive industrial strain collection assembled by Professor David Jones that includes 194 C. beijerinckii, 57 C. saccharobutylicum, 4 C. saccharoperbutylacetonicum, 5 C. butyricum, 7 C. acetobutylicum, and 3 C. tetanomorphum genomes. We report methods, analyses and characterization for phylogeny, key attributes, core biosynthetic genes, secondary metabolites, plasmids, prophage/CRISPR diversity, cellulosomes and quorum sensing for the 6 species. The expanded genomic data described here will facilitate engineering of solvent-producing clostridia as well as non-model microorganisms with innately desirable traits. Sequences could be applied in conventional platform biocatalysts such as yeast or Escherichia coli for enhanced chemical production. Recently, gene sequences from this collection were used to engineer Clostridium autoethanogenum, a gas-fermenting autotrophic acetogen, for continuous acetone or isopropanol production, as well as butanol, butanoic acid, hexanol and hexanoic acid production.


Assuntos
Clostridium , Genoma Bacteriano , Filogenia , Clostridium/genética , Solventes , Fermentação
2.
Microbiol Resour Announc ; 11(11): e0076122, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36301089

RESUMO

Here, we report the draft genome sequence of the siderophilic cyanobacterium Fischerella thermalis JSC-11, which was isolated from an iron-depositing hot spring. JSC-11 has bioremediation potential because it is capable of both extracellular absorption and intracellular mineralization of colloidal iron. This genomic information will facilitate the exploration of JSC-11 for bioremediation.

3.
Microbiol Spectr ; 10(3): e0234621, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35579457

RESUMO

Novel bacterial isolates with the capabilities of lignin depolymerization, catabolism, or both, could be pertinent to lignocellulosic biofuel applications. In this study, we aimed to identify anaerobic bacteria that could address the economic challenges faced with microbial-mediated biotechnologies, such as the need for aeration and mixing. Using a consortium seeded from temperate forest soil and enriched under anoxic conditions with organosolv lignin as the sole carbon source, we successfully isolated a novel bacterium, designated 159R. Based on the 16S rRNA gene, the isolate belongs to the genus Sodalis in the family Bruguierivoracaceae. Whole-genome sequencing revealed a genome size of 6.38 Mbp and a GC content of 55 mol%. To resolve the phylogenetic position of 159R, its phylogeny was reconstructed using (i) 16S rRNA genes of its closest relatives, (ii) multilocus sequence analysis (MLSA) of 100 genes, (iii) 49 clusters of orthologous groups (COG) domains, and (iv) 400 conserved proteins. Isolate 159R was closely related to the deadwood associated Sodalis guild rather than the tsetse fly and other insect endosymbiont guilds. Estimated genome-sequence-based digital DNA-DNA hybridization (dDDH), genome percentage of conserved proteins (POCP), and an alignment analysis between 159R and the Sodalis clade species further supported that isolate 159R was part of the Sodalis genus and a strain of Sodalis ligni. We proposed the name Sodalis ligni str. 159R (=DSM 110549 = ATCC TSD-177). IMPORTANCE Currently, in the paper industry, paper mill pulping relies on unsustainable and costly processes to remove lignin from lignocellulosic material. A greener approach is biopulping, which uses microbes and their enzymes to break down lignin. However, there are limitations to biopulping that prevent it from outcompeting other pulping processes, such as requiring constant aeration and mixing. Anaerobic bacteria are a promising alternative source for consolidated depolymerization of lignin and its conversion to valuable by-products. We presented Sodalis ligni str. 159R and its characteristics as another example of potential mechanisms that can be developed for lignocellulosic applications.


Assuntos
Enterobacteriaceae , Lignina , Anaerobiose , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Enterobacteriaceae/genética , Lignina/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
4.
Angew Chem Int Ed Engl ; 61(26): e202202708, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35347837

RESUMO

Control over thermal expansion (TE) behaviors in solid materials is often accomplished by modifying the molecules or intermolecular interactions within the solid. Here, we use a mixed cocrystal approach and incorporate molecules with similar chemical structures, but distinct functionalities. Development of mixed cocrystals is at a nascent stage, and here we describe the first mixed cocrystals sustained by one-dimensional halogen bonds. Within each mixed cocrystal, the halogen-bond donor is fixed, while the halogen-bond acceptor site contains two molecules in a variable ratio. X-ray diffraction demonstrates isostructurality across the series, and SEM-EDS shows equal distribution of heavy atoms and similar atomic compositions across all mixed cocrystals. The acceptor molecules differ in their ability to undergo dynamic motion in the solid state. The synthetic equivalents of motion capable and incapable molecules were systematically varied to yield direct tunabililty in TE behavior.

5.
mSystems ; 7(1): e0109221, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089065

RESUMO

Methylation of specific DNA sequences is ubiquitous in bacteria and has known roles in immunity and regulation of cellular processes, such as the cell cycle. Here, we explored DNA methylation in bacteria of the genus Ensifer, including its potential role in regulating terminal differentiation during nitrogen-fixing symbiosis with legumes. Using single-molecule real-time sequencing, six genome-wide methylated motifs were identified across four Ensifer strains, five of which were strain-specific. Only the GANTC motif, recognized by the cell cycle-regulated CcrM methyltransferase, was methylated in all strains. In actively dividing cell cultures, methylation of GANTC motifs increased progressively from the ori to ter regions in each replicon, in agreement with a cell cycle-dependent regulation of CcrM. In contrast, there was near full genome-wide GANTC methylation in the early stage of symbiotic differentiation. This was followed by a moderate decrease in the overall extent of methylation and a progressive decrease in chromosomal GANTC methylation from the ori to ter regions in later stages of differentiation. Based on these observations, we suggest that CcrM activity is dysregulated and constitutive during terminal differentiation, which we hypothesize is a driving factor for endoreduplication of terminally differentiated bacteroids. IMPORTANCE Nitrogen fixation by rhizobia in symbiosis with legumes is economically and ecologically important. The symbiosis can involve a complex bacterial transformation-terminal differentiation-that includes major shifts in the transcriptome and cell cycle. Epigenetic regulation is an important regulatory mechanism in diverse bacteria; however, the roles of DNA methylation in rhizobia and symbiotic nitrogen fixation have been poorly investigated. We show that aside from cell cycle regulation, DNA methyltransferases are unlikely to have conserved roles in the biology of bacteria of the genus Ensifer. However, we present evidence consistent with an interpretation that the cell cycle methyltransferase CcrM is dysregulated during symbiosis, which we hypothesize may be a key factor driving the cell cycle switch in terminal differentiation required for effective symbioses.


Assuntos
Metilação de DNA , Rhizobium , Medicago , Simbiose , Nitrogênio , Epigênese Genética , Metiltransferases
6.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748409

RESUMO

Bacterial strain A52C2T was isolated from the endophytic microbial community of a Pinus pinaster tree trunk and characterized. Strain A52C2T stained Gram-negative and formed rod-shaped cells that grew optimally at 30 °C and at pH 6.0-7.0. The G+C content of the DNA was 65.1 mol %. The respiratory quinone was ubiquinone 10, and the major fatty acids were cyclo-C19:0 ω8c and C18:0, representing 70.1 % of the total fatty acids. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain A52C2T in a distinct lineage within the order Hyphomicrobiales, family Pleomorphomonadaceae. The 16S rRNA gene sequence similarities of A52C2T to that of Mongoliimonas terrestris and Oharaeibacter diazotrophicus were 93.15 and 93.2 %, respectively. The draft genome sequence of strain A52C2T comprises 4 196 045 bases with a 195-fold mapped coverage of the genome. The assembled genome consists of 43 contigs of more than 1 000 bp (N50 contig size was 209 720 bp). The genome encodes 4033 putative coding sequences. The phylogenetic, phenotypic and chemotaxonomic data showed that strain A52C2T (=UCCCB 130T=CECT 8949T=LMG 29042T) represents the type of a novel species and genus, for which we propose the name Faunimonas pinastri gen. nov., sp. nov.


Assuntos
Alphaproteobacteria , Pinus , Ácidos Graxos/química , Fosfolipídeos/química , Endófitos , Pinus/microbiologia , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
7.
Cell Genom ; 2(12): 100213, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36778052

RESUMO

The phylum Actinobacteria includes important human pathogens like Mycobacterium tuberculosis and Corynebacterium diphtheriae and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs. A comparison of gene functions reveals novel determinants of host-microbe interaction as well as environment-specific adaptations such as potential antimicrobial peptides. We identify plasmids and prophages across isolates and uncover extensive prophage diversity structured mainly by host taxonomy. Analysis of >80,000 biosynthetic gene clusters reveals that horizontal gene transfer and gene loss shape secondary metabolite repertoire across taxa. Our observations illustrate the essential role of and need for high-quality isolate genome sequences.

8.
Microbiol Resour Announc ; 10(25): e0049521, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34165332

RESUMO

The siderophilic, thermophilic Leptolyngbyaceae cyanobacterium JSC-12 was isolated from a microbial mat in an iron-depositing hot spring. Here, we report the high-quality draft genome sequence of JSC-12, which may help elucidate the mechanisms of resistance to extreme iron concentrations in siderophilic cyanobacteria and lead to new remediation biotechnologies.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34152267

RESUMO

A rod-shaped and Gram-stain-negative bacterial strain 9AT, was isolated from an air sample collected at King George Island, maritime Antarctica. Phylogenetic analysis based on 16S rRNA gene sequence reveals that strain 9AT belongs to the genus Hymenobacter and shows the highest similarity to Hymenobacter coccineus CCM 8649T (96.8 %). The DNA G+C content based on the draft genome sequence is 64.9 mol%. Strain 9AT is strictly aerobic, psychrophilic, catalase-positive, oxidase-positive and non-motile. Growth is observed at 0-20 °C (optimum 10 °C), pH 6.0-8.0 (optimum pH 7.0), and in the absence of NaCl. The predominant menaquinone of strain 9AT is MK-7 and the major fatty acids comprise Summed Feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 25.2 %), iso-C15 : 0 (23.2 %), C16 : 1 ω5c (11.6 %), Summed Feature 4 (anteiso-C17 : 1 B/iso-C17 : 1 I) (9.6 %) and anteiso-C15 : 0 (9.6 %). The polar lipid profile consists of the major lipid phosphatidylethanolamine and moderate to minor amounts of phosphatidylserine, unidentified aminolipids, aminophospholipids, aminophosphoglycolipids, polar lipids lacking a functional group and an unidentified phospholipid and a glycolipid. In the polyamine pattern sym-homospermidine is predominant. On the basis of the results obtained, strain 9AT is proposed as a novel species of the genus Hymenobacter, for which the name Hymenobacter caeli sp. nov. is suggested. The type strain is 9AT (=CCM 8971T=LMG 32109T=DSM 111653T).


Assuntos
Microbiologia do Ar , Bacteroidetes/isolamento & purificação , Ilhas , Regiões Antárticas , Bacteroidetes/classificação , Bacteroidetes/genética , Composição de Bases , DNA Bacteriano/genética , Genoma Bacteriano , Funções Verossimilhança , Filogenia , RNA Ribossômico 16S/genética
10.
Microbiol Resour Announc ; 10(22): e0025821, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34080906

RESUMO

Cyanobacteria are ubiquitous microorganisms with crucial ecosystem functions, yet most knowledge of their biology relates to aquatic taxa. We have constructed metagenomes for 50 taxonomically well-characterized terrestrial cyanobacterial cultures. These data will support phylogenomic studies of evolutionary relationships and gene content among these unique algae and their aquatic relatives.

11.
Microbiol Resour Announc ; 10(21): e0028421, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042473

RESUMO

We report the draft genome sequences of five native nitrogen-fixing bacteria associated with roots of switchgrass isolated from the tallgrass prairies of Oklahoma. Nitrogen-fixing genes, including the nif cluster, are conserved across the Klebsiella and Kosakonia strains.

12.
Front Microbiol ; 12: 632731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017316

RESUMO

Thermoflexus hugenholtzii JAD2T, the only cultured representative of the Chloroflexota order Thermoflexales, is abundant in Great Boiling Spring (GBS), NV, United States, and close relatives inhabit geothermal systems globally. However, no defined medium exists for T. hugenholtzii JAD2T and no single carbon source is known to support its growth, leaving key knowledge gaps in its metabolism and nutritional needs. Here, we report comparative genomic analysis of the draft genome of T. hugenholtzii JAD2T and eight closely related metagenome-assembled genomes (MAGs) from geothermal sites in China, Japan, and the United States, representing "Candidatus Thermoflexus japonica," "Candidatus Thermoflexus tengchongensis," and "Candidatus Thermoflexus sinensis." Genomics was integrated with targeted exometabolomics and 13C metabolic probing of T. hugenholtzii. The Thermoflexus genomes each code for complete central carbon metabolic pathways and an unusually high abundance and diversity of peptidases, particularly Metallo- and Serine peptidase families, along with ABC transporters for peptides and some amino acids. The T. hugenholtzii JAD2T exometabolome provided evidence of extracellular proteolytic activity based on the accumulation of free amino acids. However, several neutral and polar amino acids appear not to be utilized, based on their accumulation in the medium and the lack of annotated transporters. Adenine and adenosine were scavenged, and thymine and nicotinic acid were released, suggesting interdependency with other organisms in situ. Metabolic probing of T. hugenholtzii JAD2T using 13C-labeled compounds provided evidence of oxidation of glucose, pyruvate, cysteine, and citrate, and functioning glycolytic, tricarboxylic acid (TCA), and oxidative pentose-phosphate pathways (PPPs). However, differential use of position-specific 13C-labeled compounds showed that glycolysis and the TCA cycle were uncoupled. Thus, despite the high abundance of Thermoflexus in sediments of some geothermal systems, they appear to be highly focused on chemoorganotrophy, particularly protein degradation, and may interact extensively with other microorganisms in situ.

13.
Microbiol Resour Announc ; 10(14)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833027

RESUMO

Here, we present the draft genome sequence of Bordetella sp. strain FB-8, a mixotrophic iron-oxidizing bacterium isolated from creek sediment in the former uranium-mining district of Ronneburg, Germany. To date, iron oxidation has not been reported in Bordetella species, indicating that FB-8 may be an environmentally important Bordetella sp.

14.
Front Microbiol ; 11: 572131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240229

RESUMO

Cyanobacteria are found in most illuminated environments and are key players in global carbon and nitrogen cycling. Although significant efforts have been made to advance our understanding of this important phylum, still little is known about how members of the cyanobacteria affect and respond to changes in complex biological systems. This lack of knowledge is in part due to our dependence on pure cultures when determining the metabolism and function of a microorganism. We took advantage of the Culture Collection of Microorganisms from Extreme Environments (CCMEE), a collection of more than 1,000 publicly available photosynthetic co-cultures maintained at the Pacific Northwest National Laboratory, and assessed via 16S rRNA amplicon sequencing if samples readily available from public culture collection could be used in the future to generate new insights into the role of microbial communities in global and local carbon and nitrogen cycling. Results from this work support the existing notion that culture depositories in general hold the potential to advance fundamental and applied research. Although it remains to be seen if co-cultures can be used at large scale to infer roles of individual organisms, samples that are publicly available from existing co-cultures depositories, such as the CCMEE, might be an economical starting point for such studies. Access to archived biological samples, without the need for costly field work, might in some circumstances be one of the few remaining ways to advance the field and to generate new insights into the biology of ecosystems that are not easily accessible. The current COVID-19 pandemic, which makes sampling expeditions almost impossible without putting the health of the participating scientists on the line, is a very timely example.

15.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33008825

RESUMO

Natural attenuation of heavy metals occurs via coupled microbial iron cycling and metal precipitation in creeks impacted by acid mine drainage (AMD). Here, we describe the isolation, characterization, and genomic sequencing of two iron-oxidizing bacteria (FeOB) species: Thiomonas ferrovorans FB-6 and Thiomonas metallidurans FB-Cd, isolated from slightly acidic (pH 6.3), Fe-rich, AMD-impacted creek sediments. These strains precipitated amorphous iron oxides, lepidocrocite, goethite, and magnetite or maghemite and grew at a pH optimum of 5.5. While Thiomonas spp. are known as mixotrophic sulfur oxidizers and As oxidizers, the FB strains oxidized Fe, which suggests they can efficiently remove Fe and other metals via coprecipitation. Previous evidence for Thiomonas sp. Fe oxidation is largely ambiguous, possibly because of difficulty demonstrating Fe oxidation in heterotrophic/mixotrophic organisms. Therefore, we also conducted a genomic analysis to identify genetic mechanisms of Fe oxidation, other metal transformations, and additional adaptations, comparing the two FB strain genomes with 12 other Thiomonas genomes. The FB strains fall within a relatively novel group of Thiomonas strains that includes another strain (b6) with solid evidence of Fe oxidation. Most Thiomonas isolates, including the FB strains, have the putative iron oxidation gene cyc2, but only the two FB strains possess the putative Fe oxidase genes mtoAB The two FB strain genomes contain the highest numbers of strain-specific gene clusters, greatly increasing the known Thiomonas genetic potential. Our results revealed that the FB strains are two distinct novel species of Thiomonas with the genetic potential for bioremediation of AMD via iron oxidation.IMPORTANCE As AMD moves through the environment, it impacts aquatic ecosystems, but at the same time, these ecosystems can naturally attenuate contaminated waters via acid neutralization and catalyzing metal precipitation. This is the case in the former Ronneburg uranium-mining district, where AMD impacts creek sediments. We isolated and characterized two iron-oxidizing Thiomonas species that are mildly acidophilic to neutrophilic and that have two genetic pathways for iron oxidation. These Thiomonas species are well positioned to naturally attenuate AMD as it discharges across the landscape.


Assuntos
Burkholderiales/metabolismo , Ferro/metabolismo , Rios/microbiologia , Águas Residuárias/microbiologia , Alemanha , Mineração , Oxirredução
16.
mBio ; 11(5)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900811

RESUMO

Fungal-bacterial symbioses range from antagonisms to mutualisms and remain one of the least understood interdomain interactions despite their ubiquity as well as ecological and medical importance. To build a predictive conceptual framework for understanding interactions between fungi and bacteria in different types of symbioses, we surveyed fungal and bacterial transcriptional responses in the mutualism between Rhizopus microsporus (Rm) (ATCC 52813, host) and its Mycetohabitans (formerly Burkholderia) endobacteria versus the antagonism between a nonhost Rm (ATCC 11559) and Mycetohabitans isolated from the host, at two time points, before and after partner physical contact. We found that bacteria and fungi sensed each other before contact and altered gene expression patterns accordingly. Mycetohabitans did not discriminate between the host and nonhost and engaged a common set of genes encoding known as well as novel symbiosis factors. In contrast, responses of the host versus nonhost to endobacteria were dramatically different, converging on the altered expression of genes involved in cell wall biosynthesis and reactive oxygen species (ROS) metabolism. On the basis of the observed patterns, we formulated a set of hypotheses describing fungal-bacterial interactions and tested some of them. By conducting ROS measurements, we confirmed that nonhost fungi increased production of ROS in response to endobacteria, whereas host fungi quenched their ROS output, suggesting that ROS metabolism contributes to the nonhost resistance to bacterial infection and the host ability to form a mutualism. Overall, our study offers a testable framework of predictions describing interactions of early divergent Mucoromycotina fungi with bacteria.IMPORTANCE Animals and plants interact with microbes by engaging specific surveillance systems, regulatory networks, and response modules that allow for accommodation of mutualists and defense against antagonists. Antimicrobial defense responses are mediated in both animals and plants by innate immunity systems that owe their functional similarities to convergent evolution. Like animals and plants, fungi interact with bacteria. However, the principles governing these relations are only now being discovered. In a study system of host and nonhost fungi interacting with a bacterium isolated from the host, we found that bacteria used a common gene repertoire to engage both partners. In contrast, fungal responses to bacteria differed dramatically between the host and nonhost. These findings suggest that as in animals and plants, the genetic makeup of the fungus determines whether bacterial partners are perceived as mutualists or antagonists and what specific regulatory networks and response modules are initiated during each encounter.


Assuntos
Antibiose/genética , Bactérias/genética , Bactérias/metabolismo , Fungos/genética , Fungos/metabolismo , Simbiose/genética , Bactérias/classificação , Burkholderia/genética , Burkholderia/metabolismo , Fungos/classificação , Perfilação da Expressão Gênica , Rhizopus/genética , Rhizopus/metabolismo , Transdução de Sinais
17.
Int J Syst Evol Microbiol ; 70(9): 4935-4941, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32744985

RESUMO

A rod-shaped and Gram-stain-negative bacterial strain, 1BT, was isolated from an air sample collected at King George Island, maritime Antarctica. Strain 1BT is strictly aerobic, psychrophilic, catalase-positive, oxidase-positive and non-motile. Growth of strain 1BT is observed at 0-20 °C (optimum, 10 °C), pH 6.0-8.0 (optimum, pH 8.0) and in the presence of 0-1.0% NaCl (optimum, 0.5 % NaCl). Phylogenetic analysis based on 16S rRNA gene sequences places strain 1BT within the genus Hymenobacter and shows the highest similarity to Hymenobacter antarcticus VUG-A42aaT (97.5 %). The predominant menaquinone of strain 1BT is MK-7 and the major fatty acids (>10 %) comprise summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 32.5 %), iso-C15 : 0 (17.6 %) and anteiso C15 : 0 (12.3 %). The polar lipid profile consists of the major compounds phosphatidylethanolamine, phosphatidylserine, two unidentified aminolipids and one unidentified phospholipid. The DNA G+C content based on the draft genome sequence is 61.2 mol%. Based on the data from the current polyphasic study, 1BT represents a novel species of the genus Hymenobacter, for which the name Hymenobacter artigasi sp. nov. is suggested. The type strain is 1BT (=CCM 8970T=CGMCC 1.16843T).


Assuntos
Microbiologia do Ar , Cytophagaceae/classificação , Filogenia , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Microbiome ; 8(1): 116, 2020 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-32772914

RESUMO

BACKGROUND: Cold environments dominate the Earth's biosphere and microbial activity drives ecosystem processes thereby contributing greatly to global biogeochemical cycles. Polar environments differ to all other cold environments by experiencing 24-h sunlight in summer and no sunlight in winter. The Vestfold Hills in East Antarctica contains hundreds of lakes that have evolved from a marine origin only 3000-7000 years ago. Ace Lake is a meromictic (stratified) lake from this region that has been intensively studied since the 1970s. Here, a total of 120 metagenomes representing a seasonal cycle and four summers spanning a 10-year period were analyzed to determine the effects of the polar light cycle on microbial-driven nutrient cycles. RESULTS: The lake system is characterized by complex sulfur and hydrogen cycling, especially in the anoxic layers, with multiple mechanisms for the breakdown of biopolymers present throughout the water column. The two most abundant taxa are phototrophs (green sulfur bacteria and cyanobacteria) that are highly influenced by the seasonal availability of sunlight. The extent of the Chlorobium biomass thriving at the interface in summer was captured in underwater video footage. The Chlorobium abundance dropped from up to 83% in summer to 6% in winter and 1% in spring, before rebounding to high levels. Predicted Chlorobium viruses and cyanophage were also abundant, but their levels did not negatively correlate with their hosts. CONCLUSION: Over-wintering expeditions in Antarctica are logistically challenging, meaning insight into winter processes has been inferred from limited data. Here, we found that in contrast to chemolithoautotrophic carbon fixation potential of Southern Ocean Thaumarchaeota, this marine-derived lake evolved a reliance on photosynthesis. While viruses associated with phototrophs also have high seasonal abundance, the negative impact of viral infection on host growth appeared to be limited. The microbial community as a whole appears to have developed a capacity to generate biomass and remineralize nutrients, sufficient to sustain itself between two rounds of sunlight-driven summer-activity. In addition, this unique metagenome dataset provides considerable opportunity for future interrogation of eukaryotes and their viruses, abundant uncharacterized taxa (i.e. dark matter), and for testing hypotheses about endemic species in polar aquatic ecosystems. Video Abstract.


Assuntos
Lagos/microbiologia , Lagos/virologia , Microbiota/efeitos da radiação , Fotoperíodo , Estações do Ano , Regiões Antárticas , Organismos Aquáticos/efeitos da radiação , Organismos Aquáticos/virologia , Ecossistema
19.
PeerJ ; 8: e8822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292647

RESUMO

BACKGROUND: Rosenbergiella nectarea strain 8N4T, the type species of the genus Rosenbergiella, was isolated from Amygdalus communis (almond) floral nectar. Other strains of this species were isolated from the floral nectar of Citrus paradisi (grapefruit), Nicotiana glauca (tobacco tree) and from Asphodelus aestivus. R. nectarea strain 8N4T is a Gram-negative, oxidase-negative, facultatively anaerobic bacterium in the family Enterobacteriaceae. RESULTS: Here we describe features of this organism, together with its genome sequence and annotation. The DNA GC content is 47.38%, the assembly size is 3,294,717 bp, and the total number of genes are 3,346. The genome discloses the possible role that this species may play in the plant. The genome contains both virulence genes, like pectin lyase and hemolysin, that may harm plant cells and genes that are predicted to produce volatile compounds that may impact the visitation rates by nectar consumers, such as pollinators and nectar thieves. CONCLUSIONS: The genome of R. nectarea strain 8N4T reveals a mutualistic interaction with the plant host and a possible effect on plant pollination and fitness.

20.
Microbiol Resour Announc ; 9(15)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273354

RESUMO

We report here the draft genome sequence of Yokenella regensburgei strain WCD67, isolated from the boxelder bug (Boisea trivittata). The genome is 5,277,883 bp in size, has a GC content of 54.12%, and has 5,416 genes. A total of 17 mobile elements were discovered, 6 of which were predicted to be phages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA