Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 899: 165726, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37495153

RESUMO

Chromium (Cr) is released into the environment through anthropogenic activities and has gained significant attention in the recent decade as environmental pollution. Its contamination has adverse effects on human health and the environment e.g. decreases soil fertility, alters microbial activity, and reduces plant growth. It can occur in different oxidation states, with Cr(VI) being the most toxic form. Cr contamination is a significant environmental and health issue, and phytoremediation offers a promising technology for remediating Cr-contaminated soils. Globally, over 400 hyperaccumulator plant species from 45 families have been identified which have the potential to remediate Cr-contaminated soils through phytoremediation. Phytoremediation can be achieved through various mechanisms, such as phytoextraction, phytovolatilization, phytodegradation, phytostabilization, phytostimulation, and rhizofiltration. Understanding the sources and impacts of Cr contamination, as well as the factors affecting Cr uptake in plants and remediation techniques such as phytoremediation and mechanisms behind it, is crucial for the development of effective phytoremediation strategies. Overall, phytoremediation offers a cost-effective and sustainable solution to the problem of Cr pollution. Further research is needed to identify plant species that are more efficient at accumulating Cr and to optimize phytoremediation methods for specific environmental conditions. With continued research and development, phytoremediation has the potential to become a widely adopted technique for the remediation of heavy metal-contaminated soils.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cromo/metabolismo , Biodegradação Ambiental , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/análise , Solo
2.
Plant Physiol Biochem ; 196: 130-138, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706692

RESUMO

Chromium (Cr) is a hazardous metal that has a significant risk of transfer from soil to edible parts of food crops, including shoot tissues. Reduction of Cr accumulation is required to lower the risk of Cr-exposed in humans and animals feeding on metal-contaminated parts of such plant. Zea mays is a global staple crop irrigated intensively with Cr-contaminated water. Consequently, the objective of this study was to investigate that FI-stabilized ZnO NPs could be used as an eco-friendly and efficient amendment to reduced Cr uptake and toxicity in Zea mays. To investigate the growth parameters, physiological, oxidative stress and biochemical parameters under different Cr-VI concentrations (10.0, 15.0, and 20.0 ppm). Cr exposed Z. mays plants exhibited substantially reduced plant biomass, chlorophyll contents, and altered antioxidant enzyme activity compared to untreated control. The results revealed that foliar application of Fagonia-ZnO-NPs helps eliminate the harmful effects of Cr (VI), which can enter plants through soil pollution. Increased levels of proline, soluble sugars and various antioxidant enzymes reflected this. Mean comparisons showed that Cr stress led to a 33-50% reduction in fresh shoot weight, 73-170% in fresh root weight, 16-34% shoot length, 9.5-129% root length, Chlorophyll contents 20-33% (Chl a), 18-27% (Chl b) and 17-27% (car), 14-33% total soluble sugars, 54-170% proline content, 7-7.5% POD, 0.66-75% CAT and 32-77% APX enzyme activities compared to untreated plants. Application of FI-stabilized ZnO NPs led to an increase 21-77% in fresh shoot weight, 22-45%, fresh root weight, 3-35% shoot length, 24-154% root length, Chlorophyll contents 39-60% (Chl a), 15-79% (Chl b) and 28-82% (car), 19-52% total soluble sugars, 21-55% proline content, 14-43% POD, 34-95% CAT and 130-186% APX enzyme activities under 10, 15 and 20 ppm Cr stress respectively, compared to Cr-treated plants. However, the principal component analysis revealed that chlorophyll contents, carotenoid, CAT, APX and length were in the same group and showed a positive correlation. These data collectively suggest that phytostabilized zinc oxide NPs may be an eco-friendly solution to mitigate Cr toxicity in agricultural soils and crop plants.


Assuntos
Nanopartículas , Poluentes do Solo , Óxido de Zinco , Humanos , Antioxidantes , Óxido de Zinco/farmacologia , Zea mays , Clorofila/análise , Cromo/toxicidade , Prolina , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA