Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708907

RESUMO

Human stem cell therapy for type 2 diabetes/obesity (T2D/O) complications is performedwith stem cell autografts, exposed to the noxious T2D/O milieu, often with suboptimal results.We showed in the Obese Zucker (OZ) rat model of T2D/O that when their muscle-derived stemcells (MDSC) were from long-term T2D/O male rats, their repair ecacy for erectile dysfunctionwas impaired and were imprinted with abnormal gene- and miR-global transcriptional signatures(GTS). The damage was reproduced in vitro by short-term exposure of normal MDSC to dyslipidemicserum, causing altered miR-GTS, fat infiltration, apoptosis, impaired scratch healing, and myostatinoverexpression. Similar in vitro alterations occurred with their normal counterparts (ZF4-SC) fromthe T2D/O rat model for female stress urinary incontinence, and with ZL4-SC from non-T2D/O leanfemale rats. In the current work we studied the in vitro eects of cholesterol and Na palmitate aslipid factors on ZF4-SC and ZL4-SC. A damage partially resembling the one caused by the femaledyslipidemic serum was found, but diering between both lipid factors, so that each one appears tocontribute specifically to the stem cell damaging eects of dyslipidemic serum in vitro and T2D/Oin vivo, irrespective of gender. These results also confirm the miR-GTS biomarker value forMDSC damage.


Assuntos
Colesterol/metabolismo , Diabetes Mellitus Tipo 2/patologia , Obesidade/patologia , Ácido Palmítico/metabolismo , Células-Tronco/patologia , Incontinência Urinária por Estresse/patologia , Animais , Apoptose , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Obesidade/metabolismo , Ratos , Ratos Zucker , Células-Tronco/metabolismo , Incontinência Urinária por Estresse/metabolismo
2.
Int J Mol Sci ; 20(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430893

RESUMO

Female stress urinary incontinence (FSUI) is prevalent in women with type 2 diabetes/obesity (T2D/O), and treatment is not optimal. Autograph stem cell therapy surprisingly has poor efficacy. In the male rat model of T2D/O, it was demonstrated that epigenetic changes, triggered by long-term exposure to the dyslipidemic milieu, led to abnormal global transcriptional signatures (GTS) of genes and microRNAs (miR), and impaired the repair capacity of muscle-derived stem cells (MDSC). This was mimicked in vitro by treatment of MDSC with dyslipidemic serum or lipid factors. The current study aimed to predict whether these changes also occur in stem cells from female 12 weeks old T2D/O rats, a model of FSUI. MDSCs from T2D/O (ZF4-SC) and normal female rats (ZL4-SC) were treated in vitro with either dyslipidemic serum (ZFS) from late T2D/O 24 weeks old female Zucker fatty (ZF) rats, or normal serum (ZLS) from 24 weeks old female Zucker lean (ZL) rats, for 4 days and subjected to assays for fat deposition, apoptosis, scratch closing, myostatin, interleukin-6, and miR-GTS. The dyslipidemic ZFS affected both female stem cells more severely than in the male MDSC, with some gender-specific differences in miR-GTS. The changes in miR-GTS and myostatin/interleukin-6 balance may predict in vivo noxious effects of the T2D/O milieu that might impair autograft stem cell (SC) therapy for FSUI, but this requires future studies.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Dislipidemias/patologia , Células-Tronco/patologia , Incontinência Urinária/patologia , Animais , Apoptose , Células Cultivadas , Modelos Animais de Doenças , Dislipidemias/sangue , Feminino , Masculino , Ratos , Ratos Zucker , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA