Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
J Med Chem ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716896

RESUMO

There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.

2.
Pharmacol Res ; 203: 107163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569982

RESUMO

Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Tolerância a Medicamentos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
3.
Eur J Pharmacol ; 971: 176540, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552938

RESUMO

Identification of concomitant miRNAs and transcription factors (TFs) with differential expression (DEGs) in MI is crucial for understanding holistic gene regulation, identifying key regulators, and precision in biomarker and therapeutic target discovery. We performed a comprehensive analysis using Affymetrix microarray data, advanced bioinformatic tools, and experimental validation to explore potential biomarkers associated with human pathology. The search strategy includes the identification of the GSE83500 dataset, comprising gene expression profiles from aortic wall punch biopsies of MI and non-MI patients, which were used in the present study. The analysis identified nine distinct genes exhibiting DEGs within the realm of MI. miRNA-gene/TF and TF-gene/miRNA regulatory relations were mapped to retrieve interacting hub genes to acquire an MI miRNA-TF co-regulatory network. Furthermore, an animal model of I/R-induced MI confirmed the involved gene based on quantitative RT-PCR and Western blot analysis. The consequences of the bioinformatic tool substantiate the inference regarding the presence of three key hub genes (UBE2N, TMEM106B, and CXADR), a central miRNA (hsa-miR-124-3p), and sixteen TFs. Animal studies support the involvement of predicted genes in the I/R-induced myocardial infarction assessed by RT-PCR and Western blotting. Thus, the final consequences suggest the involvement of promising molecular pathways regulated by TF (p53/NF-κB1), miRNA (hsa-miR-124-3p), and hub gene (UBE2N), which may play a key role in the pathogenesis of MI.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
4.
Nat Biomed Eng ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499643

RESUMO

Diagnosing and monitoring inflammatory bowel diseases, such as Crohn's disease, involves the use of endoscopic imaging, biopsies and serology. These infrequent tests cannot, however, identify sudden onsets and severe flare-ups to facilitate early intervention. Hence, about 70% of patients with Crohn's disease require surgical intestinal resections in their lifetime. Here we report wireless, miniaturized and implantable temperature sensors for the real-time chronic monitoring of disease progression, which we tested for nearly 4 months in a mouse model of Crohn's-disease-like ileitis. Local measurements of intestinal temperature via intraperitoneally implanted sensors held in place against abdominal muscular tissue via two sutures showed the development of ultradian rhythms at approximately 5 weeks before the visual emergence of inflammatory skip lesions. The ultradian rhythms showed correlations with variations in the concentrations of stress hormones and inflammatory cytokines in blood. Decreasing average temperatures over the span of approximately 23 weeks were accompanied by an increasing percentage of inflammatory species in ileal lesions. These miniaturized temperature sensors may aid the early treatment of inflammatory bowel diseases upon the detection of episodic flare-ups.

5.
Biochem Biophys Res Commun ; 705: 149756, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38460440

RESUMO

Exacerbated expression of TLR4 protein (foremost pattern recognition receptor) during obesity could trigger NF-κB/iNOS signaling through linker protein (MyD88), predisposed to an indispensable inflammatory response. The induction of this detrimental cascade leads to myocardial and vascular abnormalities. Molecular docking was studied for protein-ligand interaction between these potential targets and resveratrol. The pre-treatment of resveratrol (20 mg/kg/p.o/per day for ten weeks) was given to investigate the therapeutic effect against HFD-induced obesity and associated vascular endothelial dysfunction (VED) and myocardial infarction (MI) in Wistar rats. In addition to accessing the levels of serum biomarkers for VED and MI, oxidative stress, inflammatory cytokines, and histopathology of these tissues were investigated. Lipopolysaccharide (for receptor activation) and protein expression analysis were introduced to explore the mechanistic involvement of TLR4/MyD88/NF-κB/iNOS signaling. Assessment of in-silico analysis showed significant interaction between protein and ligand. The involvement of this proposed signaling (TLR4/MyD88/NF-κB/iNOS) was further endorsed by the impact of lipopolysaccharide and protein expression analysis in obese and treated rats. Moreover, resveratrol pre-treated rats showed significantly lowered cardio and vascular damage measured by the distinct down expression of the TLR4/MyD88/NF-κB/iNOS pathway by resveratrol treatment endorses its ameliorative effect against VED and MI.


Assuntos
Infarto do Miocárdio , Estilbenos , Ratos , Animais , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Resveratrol/farmacologia , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Lipopolissacarídeos/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Ratos Wistar , Infarto do Miocárdio/tratamento farmacológico , Dieta
6.
Chem Biol Drug Des ; 103(3): e14502, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38453260

RESUMO

We designed and synthesized thirty novel quinoxaline aryl ethers as anticancer agents, and the structures of final compounds were confirmed with various analytical techniques like Mass, 1 H NMR, 13 C NMR, FTIR, and elemental analyses. The compounds were tested against three cancer cell lines: colon cancer (HCT-116), breast cancer (MDA-MB-231), prostate cancer (DU-145), and one normal cell line: human embryonic kidney cell line (HEK-293). The obtained results indicate that two compounds, FQ and MQ, with IC50 values < 16 µM, were the most active compounds. Molecular docking studies revealed the binding of FQ and MQ molecules in the active site of the c-Met kinase (PDB ID: 3F66, 1.40 Å). Furthermore, QikProp ADME prediction and the MDS analysis preserved those critical docking data of both compounds, FQ and MQ. Western blotting was used to confirm the impact of the compounds FQ and MQ on the inhibition of the c-Met kinase receptor. The apoptosis assays were performed to investigate the mechanism of cell death for the most active compounds, FQ and MQ. The Annexin V/7-AAD assay indicated apoptosis in MDA-MB-231 cells treated with FQ and MQ, with FQ (21.4%) showing a higher efficacy in killing MDA-MB-231 cells than MQ (14.25%). The Caspase 3/7 7-AAD assay further supported these findings, revealing higher percentages of apoptotic cells for FQ-treated MDA-MB-231 cells (41.8%). The results obtained from the apoptosis assay conclude that FQ exhibits better anticancer activity against MDA-MB-231 cells than MQ.


Assuntos
Antineoplásicos , Éteres , Humanos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Quinoxalinas/farmacologia , Células HEK293 , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Apoptose , Estrutura Molecular , Relação Estrutura-Atividade
7.
RSC Med Chem ; 15(3): 937-962, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516586

RESUMO

DNA polymerase ß (Polß) is crucial for the base excision repair (BER) pathway of DNA damage repair and is an attractive target for suppressing tumorigenesis as well as chemotherapeutic intervention of cancer. In this study, a unique strategy of scaffold-hopping-based molecular editing of a bioactive agent NSC-666719 was investigated, which led to the development of new molecular motifs with Polß inhibitory activity. NSC compound and its analogs (two series) were prepared, focusing on pharmacophore-based molecular diversity. Most compounds showed higher activities than the parent NSC-666719 and exhibited effects on apoptosis. The inhibitory activity of Polß was evaluated in both in vitro reconstituted and in vivo intact cell systems. Compound 10e demonstrated significant Polß interaction and inhibition characteristics, including direct, non-covalent, reversible, and comparable binding affinity. The investigated approach is useful, and the discovered novel analogs have a high potential for developing as anticancer therapeutics.

8.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547066

RESUMO

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Assuntos
Bexiga Urinária , Infecções Urinárias , Animais , Humanos , Bexiga Urinária/cirurgia , Urodinâmica/fisiologia , Próteses e Implantes , Cistectomia
9.
PNAS Nexus ; 3(2): pgae038, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344009

RESUMO

To date, there are no efficacious translational solutions for end-stage urinary bladder dysfunction. Current surgical strategies, including urinary diversion and bladder augmentation enterocystoplasty (BAE), utilize autologous intestinal segments (e.g. ileum) to increase bladder capacity to protect renal function. Considered the standard of care, BAE is fraught with numerous short- and long-term clinical complications. Previous clinical trials employing tissue engineering approaches for bladder tissue regeneration have also been unable to translate bench-top findings into clinical practice. Major obstacles still persist that need to be overcome in order to advance tissue-engineered products into the clinical arena. These include scaffold/bladder incongruencies, the acquisition and utility of appropriate cells for anatomic and physiologic tissue recapitulation, and the choice of an appropriate animal model for testing. In this study, we demonstrate that the elastomeric, bladder biomechanocompatible poly(1,8-octamethylene-citrate-co-octanol) (PRS; synthetic) scaffold coseeded with autologous bone marrow-derived mesenchymal stem cells and CD34+ hematopoietic stem/progenitor cells support robust long-term, functional bladder tissue regeneration within the context of a clinically relevant baboon bladder augmentation model simulating bladder trauma. Partially cystectomized baboons were independently augmented with either autologous ileum or stem-cell-seeded small-intestinal submucosa (SIS; a commercially available biological scaffold) or PRS grafts. Stem-cell synergism promoted functional trilayer bladder tissue regeneration, including whole-graft neurovascularization, in both cell-seeded grafts. However, PRS-augmented animals demonstrated fewer clinical complications and more advantageous tissue characterization metrics compared to ileum and SIS-augmented animals. Two-year study data demonstrate that PRS/stem-cell-seeded grafts drive bladder tissue regeneration and are a suitable alternative to BAE.

10.
Pharmaceutics ; 16(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399326

RESUMO

Currently, cancer remains a global health problem. Despite the existence of several treatments, including chemotherapy, immunotherapy, and radiation therapy, the survival rate for most cancer patients, particularly those with metastasis, remains unsatisfactory. Thus, there is a continuous need to develop novel, effective therapies. In this work, 22 novel molecules containing selenium are reported, including seven Se-acylisoselenoureas synthesized from aliphatic carbodiimides as well as acylselenoureas with the same carbo- and heterocycles and aliphatic amines. After an initial screening at two doses (50 and 10 µM) in MDA-MB-231 (breast), HTB-54 (lung), DU-145 (prostate), and HCT-116 (colon) tumor cell lines, the ten most active compounds were identified. Additionally, these ten hits were also submitted to the DTP program of the NCI to study their cytotoxicity in a panel of 60 cancer cell lines. Compound 4 was identified as the most potent antiproliferative compound. The results obtained showed that compound 4 presented IC50 values lower than 10 µM in the cancer cell lines, although it was not the most selective one. Furthermore, compound 4 was found to inhibit cell growth and cause cell death by inducing apoptosis partially via ROS production. Overall, our results suggest that compound 4 could be a potential chemotherapeutic drug for different types of cancer.

11.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338811

RESUMO

Commercial cyclodextrins (CDs) are commonly used to form inclusion complexes (ICs) with different molecules in order to enhance their water solubility, stability, and bioavailability. Nowadays, there is strong, convincing evidence of the anticancer effect of selenium (Se)-containing compounds. However, pharmaceutical limitations, such as an unpleasant taste or poor aqueous solubility, impede their further evaluation and clinical use. In this work, we study the enhancement of solubility with CD complexes for a set of different nonsteroidal anti-inflammatory drug (NSAID) derivatives with Se as selenoester or diacyl diselenide chemical forms, with demonstrated antitumoral activity. The CD complexes were analyzed via nuclear magnetic resonance (NMR) spectroscopic techniques. In order to obtain additional data that could help explain the experimental results obtained, 3D models of the theoretical CD-compound complexes were constructed using molecular modeling techniques. Among all the compounds, I.3e and II.5 showed a remarkable increase in their water solubility, which could be ascribed to the formation of the most stable interactions with the CDs used, in agreement with the in silico studies performed. Thus, the preliminary results obtained in this work led us to confirm the selection of ß and γ-CD as the most suitable for overcoming the pharmaceutical drawbacks of these Se derivatives.


Assuntos
Ciclodextrinas , Selênio , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Solubilidade , Água/química , Preparações Farmacêuticas , Anti-Inflamatórios não Esteroides/farmacologia
12.
Eur J Neurosci ; 59(7): 1833-1847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217338

RESUMO

Neurodegenerative diseases (NDs) are a significant global health concern, primarily affecting middle and older populations. Recently, there has been growing interest in herbal therapeutics as a potential approach to address diverse neuropathological conditions. Despite the widespread prevalence of NDs, limited phytochemical has been reported for their promising therapeutic potential with distinct underlying mechanisms. Additionally, the intricate molecular pathways influenced by herbal phytoconstituents, particularly in neurodegenerative disorders, are also not well documented. This report explores the phytoconstituents of Ficus racemosa (F. racemosa), an unfamiliar plant of the Moraceae family, for their potential interactions with pathological pathways of NDs. The influential phytoconstituents of F. racemosa, including polyphenols, glycosides, terpenoids, and furocoumarin, have been reported for targeting diverse pathological states. We proposed the most convincing molecular interplay between leading phytoconstituents and detrimental signalling cascades. However, extensive research is required to thoroughly understand the phytochemical persuaded intricate molecular pathway. The comprehensive evidence strongly suggests that F. racemosa and its natural compounds could be valuable in treating NDs. This points towards an exciting path for future research and the development of potential treatments based on a molecular level.


Assuntos
Ficus , Doenças Neurodegenerativas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ficus/química , Doenças Neurodegenerativas/tratamento farmacológico , Compostos Fitoquímicos
13.
Cancer Cell Int ; 24(1): 11, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184584

RESUMO

Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase integral to the regulation of many cellular processes. Due to the deregulation of PP2A in cancer, many of these processes are turned toward promoting tumor progression. Considerable research has been undertaken to discover molecules capable of modulating PP2A activity in cancer. Because PP2A is capable of immense substrate specificity across many cellular processes, the therapeutic targeting of PP2A in cancer can be completed through either enzyme inhibitors or activators. PP2A modulators likewise tend to be effective in drug-resistant cancers and work synergistically with other known cancer therapeutics. In this review, we will discuss the patterns of PP2A deregulation in cancer, and its known downstream signaling pathways important for cancer regulation, along with many activators and inhibitors of PP2A known to inhibit cancer progression.

14.
Eur J Med Chem ; 263: 115940, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976707

RESUMO

IGF2BP1 is a protein that controls the stability, localization, and translation of various mRNA targets. Poor clinical outcomes in numerous cancer types have been associated with its overexpression. As it has been demonstrated to impede tumor growth and metastasis in animal models, inhibiting IGF2BP1 function is a promising strategy for combating cancer. A lead chemical, 7773, which specifically decreased IGF2BP1 RNA binding and cellular activities, was previously identified in a high-throughput screen for effective IGF2BP1 inhibitors. Additional optimization of 7773 described in this manuscript led to the discovery of six compounds that performed equally well or better than 7773. In cell lines with high levels of endogenous IGF2BP1, one of 7773 derivatives, AVJ16, was found to be most efficient at preventing cell migration. Further, AVJ16 was found to be IGF2BP1-specific because it had no effect on cell lines that expressed little or no IGF2BP1 protein. The direct binding of AVJ16 to IGF2BP1 was validated by binding tests, with a 12-fold increase in binding efficiency over the lead compound. AVJ16 was shown to bind to a hydrophobic region at the protein's KH34 di-domain interface between the KH3 and KH4 domains. Overall, the findings imply that AVJ16 is a potent and specific inhibitor of IGF2BP1 activity.


Assuntos
Neoplasias , Animais , Neoplasias/tratamento farmacológico , Neoplasias/genética , Movimento Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
15.
Data Brief ; 52: 109907, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38093850

RESUMO

Asphaltenes, a distinct class of molecules found in crude oil, exhibit insolubility in nonpolar solvents like n-heptane but are soluble in aromatic solvents such as toluene and benzene. Understanding asphaltenes is crucial in the petroleum industry due to their detrimental effects on oil processing, resulting in significant economic losses and production disruptions. While no singular structure defines asphaltenes, two major molecular architectures, namely archipelago and continental models, have gained wide acceptance for their consistency with various experimental investigations and subsequent use in computational studies. The archipelago model comprises two or more polyaromatic hydrocarbon entities interconnected via aliphatic side chains. In contrast, the island or continental model features a unified polyaromatic hydrocarbon moiety with 4 to 10 fused aromatic rings, averaging around 7 rings. To establish a comprehensive collection, we meticulously curated over 250 asphaltene structures derived from previous experimental and computational studies in this field. Our curation process involved an extensive literature survey, conversion of figures from publications into molecular structure files, careful verification of conversion accuracy, and structure editing to ensure alignment with molecular formulas. Our database provides digital structure files and optimized geometries for both predominant structural motifs. The optimization procedure commenced with the PM6 semi-empirical method, followed by further optimization utilizing density functional theory employing the B3LYP functional and the 6-31+G(d,p) basis set. Furthermore, we compiled a range of structural and electronic features for these molecules, serving as a valuable foundation for employing machine learning algorithms to investigate asphaltenes. This work provides a ready to use structural database of asphaltenes and sets the stage for future research endeavours in this domain.

16.
Bioorg Chem ; 142: 106953, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925887

RESUMO

Herein, a series of isatin tethered indolo[2,3-b]quinoxaline hybrids was synthesized by considering the pharmacophoric features of known DNA intercalators and topoisomerase II inhibitors. The anti-proliferative properties of the synthesized compounds were evaluated against ovarian cancer cell lines (SKOV-3 and Hey A8). Four of the compounds exhibited promising anti-proliferative activities, with one of them being 10-fold more potent than cisplatin against drug-resistant Hey A8 cells. Further investigations were carried out to determine the DNA intercalating affinities of the most active compounds as potential mechanisms for their anti-proliferative activities. ADMET in silico studies were performed to assess the physicochemical, pharmacokinetics, and toxicity parameters of active compounds. This study, to the best of our knowledge, is the first report on the potential of isatin-indoloquinoxaline hybrids as structural blueprints for the development of new DNA intercalators. Additionally, it explores their potential to circumvent platinum-based resistance in ovarian cancer.


Assuntos
Antineoplásicos , Isatina , Neoplasias Ovarianas , Humanos , Feminino , Isatina/farmacologia , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/química , Linhagem Celular Tumoral , Antineoplásicos/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , DNA/metabolismo , Relação Estrutura-Atividade
17.
Pathog Dis ; 812023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38017622

RESUMO

Infection of macrophages with Mycobacterium tuberculosis induces innate immune responses designed to clear the invading bacterium. However, bacteria often survive within the intracellular environment by exploiting these responses triggered by macrophages. Here, the role of the orphan nuclear receptor Nur77 (Nr4a1) in regulating the response of macrophages infected with M. tuberculosis (Mtb) has been delineated. Nur77 is induced early during infection, regulates metabolism by binding directly at the promoter of the TCA cycle enzyme, isocitrate dehydrogenase 2 (IDH2), to act as its repressor, and shifts the balance from a proinflammatory to an anti-inflammatory phenotype. Depletion of Nur77 increased transcription of IDH2 and, consequently, the levels of intracellular succinate, leading to enhanced levels of the proinflammatory cytokine IL-1ß. Further, Nur77 inhibited the production of antibacterial nitric oxide and IL-1ß in a succinate dehydrogenase (SDH)-dependent manner, suggesting that its induction favors bacterial survival by suppressing bactericidal responses. Indeed, depletion of Nur77 inhibited the intracellular survival of Mtb. On the other hand, depletion of Nur77 enhanced lipid body formation, suggesting that the fall in Nur77 levels as infection progresses likely favors foamy macrophage formation and long-term survival of Mtb in the host milieu.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Citocinas/metabolismo , Gotículas Lipídicas/metabolismo , Macrófagos , Tuberculose/microbiologia
18.
Drug Discov Today ; 28(12): 103824, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949428

RESUMO

Dysbiosis-associated molecular pathology is significantly involved in developing and perpetuating metabolic disorders, disrupting host energy regulation, and triggering inflammatory signaling cascades, insulin resistance, and metabolic dysfunction. Concurrently, numerous phytoconstituents are able to interact with the gut microbiota and produce bioactive metabolites that influence host cellular pathways, inflammation, and metabolic processes. These effects include improved insulin sensitivity, lipid metabolism regulation, and suppression of chronic inflammation, highlighting the therapeutic potential of phytoconstituents against metabolic abnormalities. Understanding this symbiotic relationship and the underlying molecular cascades offers innovative strategies for tailored interventions and promising therapeutic approaches to address the growing burden of metabolic disease.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Doenças Metabólicas , Humanos , Inflamação/metabolismo
19.
Antioxidants (Basel) ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759969

RESUMO

The introduction of selenium (Se) into organic scaffolds has been demonstrated to be a promising framework in the field of medicinal chemistry. A novel design of nonsteroidal anti-inflammatory drug (NSAID) derivatives based on a bioisosteric replacement via the incorporation of Se as diacyl diselenide is reported. The antioxidant activity was assessed using the DPPH radical scavenging assay. The new Se-NSAID derivatives bearing this unique combination showed antioxidant activity in a time- and dose-dependent manner, and also displayed different antiproliferative profiles in a panel of eight cancer cell lines as determined by the MTT assay. Ibuprofen derivative 5 was not only the most antioxidant agent, but also selectively induced toxicity in all the cancer cell lines tested (IC50 < 10 µM) while sparing nonmalignant cells, and induced apoptosis partially without enhancing the caspase 3/7 activity. Furthermore, NSAID derivative 5 significantly suppressed tumor growth in a subcutaneous colon cancer xenograft mouse model (10 mg/kg, TGI = 72%, and T/C = 38%) without exhibiting any apparent toxicity. To our knowledge, this work constitutes the first report on in vitro and in vivo anticancer activity of an unprecedented Se-NSAID hybrid derivative and its rational use for developing precursors for bioisosteric selenocompounds with appealing therapeutic applications.

20.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693577

RESUMO

Urinary bladder insult can be caused by environmental, genetic, and developmental factors. Depending upon insult severity, the bladder may lose its ability to maintain capacity and intravesical pressures resulting in renal deterioration. Bladder augmentation enterocystoplasty (BAE) is employed to increase bladder capacity to preserve renal function using autologous bowel tissue as a "patch." To avoid the clinical complications associated with this procedure, we have engineered composite grafts comprised of autologous bone marrow mesenchymal stem cells (MSCs) with CD34+ hematopoietic stem/progenitor cells (HSPCs) co-seeded onto a pliable synthetic scaffold [POCO; poly(1,8-octamethylene-citrate-co-octanol)] or a biological scaffold (SIS; small intestinal submucosa) to regenerate bladder tissue in a baboon bladder augmentation model. We set out to determine the protein expression profile of bladder tissue that has undergone regeneration with the aforementioned stem cell seeded scaffolds along with baboons that underwent BAE. Data demonstrate that POCO and SIS grafted animals share high protein homogeneity between native and regenerated tissues while BAE animals displayed heterogenous protein expression between the tissues following long-term engraftment. We posit that stem cell seeded scaffolds can recapitulate tissue that is almost indistinguishable from native tissue at the protein level and may be used in lieu of procedures such as BAE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA