Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2346, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282114

RESUMO

The study presents the first to characterize novel Erucastrum canarianse Webb and Berthel (or Can) sterile cytoplasm-based CMS lines in Indian cauliflower (Brassica oleracea var. botrytis L.) and investigating their commercial suitability. Eleven Can-based CMS lines were examined for 12 agro-morphological and yield traits,18 floral traits, four seed yield traits together with three each of the Ogura (source: wild Japanese Radish) and Tour (Source: Brassica tournefortii) cytoplasms. All of the recorded floral and seed traits showed significant (P > 0.05) differences between the CMS lines of each group. Agro-morphological and yield traits in CMS lines and their maintainers, however, were non-significantly different. All the Can- and Ogura-based CMS lines showed flowering and appropriate seed formation by natural cross-pollination. Only two Tour cytoplasm-based CMS lines, Tour (DC-41-5) and Tour (DC-67), produced the smallest malformed flowers and stigma. The highest seed yield per plant in CMS lines was in Ogu (DC-98-4) and the lowest in Tour (DC-67). P14 and P15, two polymorphic mtDNA markers, were discovered for the Can CMS system for early detection. Five primers (ITS5a-ITS4, atpF-atpH, P16, rbeL and trnL), along with their maintainers, were sequenced and aligned to detect nucleotide changes including as additions and or deletions at different positions. The newly introduced E. canariense sterile cytoplasm-based CMS system in cauliflower is the subject of the first comprehensive report, which emphasises their potential as a further stable and reliable genetic mechanism for hybrid breeding.


Assuntos
Brassica , Raphanus , Brassica/genética , Melhoramento Vegetal , Citoplasma/genética , Citosol , Fenótipo , Infertilidade das Plantas/genética
2.
Protoplasma ; 260(4): 1149-1162, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36705736

RESUMO

Histone proteins play a critical role in the primary organization of nucleosomes, which is the fundamental unit of chromatin. Among the five types of the histones, histone H3 has multiple variants, and the number differs among the species. Amongst histone H3 variants, centromeric histone H3 (CENH3) is crucial for centromere identification and proper chromosomal segregation during cell division. In the present study, we have identified 17 putative histone H3 genes of Brassica oleracea. Furthermore, we have done a detailed characterization of the CENH3 gene of B. oleracea. We showed that a single CENH3 gene exhibits allelic diversity with at least two alleles and alternative splicing pattern. Also, we have identified a CENH3 gene-specific co-dominant cleaved amplified polymorphic sequence marker SNP34(A/C) to distinguish CENH3 alleles and follow their expression in leaf and flower tissues. The gene structure analysis of the CENH3 gene revealed the conserved 5'-CAGCAG-3' sequence at the intron 3-exon 4 junction in B. oleracea, which serves as an alternative splicing site with one-codon (alanine) addition/deletion. However, this one-codon alternative splicing feature is not conserved in the CENH3 genes of wild allied Brassica species. Our finding suggests that transcriptional complexity and alternative splicing might play a key role in the transcriptional regulation and function of the CENH3 gene in B. oleracea. Altogether, data generated from the present study can serve as a primary information resource and can be used to engineer CENH3 gene towards developing haploid inducer lines in B. oleracea.


Assuntos
Brassica , Histonas , Histonas/metabolismo , Botrytis/genética , Botrytis/metabolismo , Alelos , Centrômero/metabolismo , Brassica/genética , Brassica/metabolismo
3.
Front Genet ; 13: 932430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979429

RESUMO

Domestication is a dynamic and ongoing process of transforming wild species into cultivated species by selecting desirable agricultural plant features to meet human needs such as taste, yield, storage, and cultivation practices. Human plant domestication began in the Fertile Crescent around 12,000 years ago and spread throughout the world, including China, Mesoamerica, the Andes and Near Oceania, Sub-Saharan Africa, and eastern North America. Indus valley civilizations have played a great role in the domestication of grain legumes. Crops, such as pigeon pea, black gram, green gram, lablab bean, moth bean, and horse gram, originated in the Indian subcontinent, and Neolithic archaeological records indicate that these crops were first domesticated by early civilizations in the region. The domestication and evolution of wild ancestors into today's elite cultivars are important contributors to global food supply and agricultural crop improvement. In addition, food legumes contribute to food security by protecting human health and minimize climate change impacts. During the domestication process, legume crop species have undergone a severe genetic diversity loss, and only a very narrow range of variability is retained in the cultivars. Further reduction in genetic diversity occurred during seed dispersal and movement across the continents. In general, only a few traits, such as shattering resistance, seed dormancy loss, stem growth behavior, flowering-maturity period, and yield traits, have prominence in the domestication process across the species. Thus, identification and knowledge of domestication responsive loci were often useful in accelerating new species' domestication. The genes and metabolic pathways responsible for the significant alterations that occurred as an outcome of domestication might aid in the quick domestication of novel crops. Further, recent advances in "omics" sciences, gene-editing technologies, and functional analysis will accelerate the domestication and crop improvement of new crop species without losing much genetic diversity. In this review, we have discussed about the origin, center of diversity, and seed movement of major food legumes, which will be useful in the exploration and utilization of genetic diversity in crop improvement. Further, we have discussed about the major genes/QTLs associated with the domestication syndrome in pulse crops and the future strategies to improve the food legume crops.

5.
PLoS One ; 16(12): e0260246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890399

RESUMO

The present study analysed the molecular and agro-morphological diversity in a set of 92 diverse cauliflower genotypes and two each of cabbage and broccoli. Field evaluation of the genotypes was done in randomized block design (RBD) at two locations (i.e. IARI, New Delhi and ICAR-RC-NEH Region, Barapani) during Rabi2019-20. Genotypes showed variation for all the eight observed traits at both locations and, the differences in early and snowball groups were distinct. Pusa Meghna, DC-33-8, Pusa Kartiki and CC-14 were earliest for curd initiation. Genotypes showed higher values for curd traits at Delhi. Molecular diversity was detected with 90 polymorphic simple sequence repeats (SSR). Number of alleles ranged from 1 to 9 with mean value of 2.16 and the highest polymorphic information content (PIC) value was observed for primer BoGMS0742 (0.68) with a mean value of 0.18. Cluster analysis using agro-morphological traits substantiated classification of the genotypes for maturity groups. However, SSR analysis revealed four clusters and with a composite pattern of genotype distribution. STRUCTURE analysis also supported the admixture and four subpopulations. The studyindicates for introgression of genetic fragments across the maturity groups, thereby, potential for use in further genetic improvement and heterosis breeding.


Assuntos
Brassica/genética , Alelos , Botrytis/genética , Análise por Conglomerados , Variação Genética , Genótipo , Índia , Polimorfismo Genético
6.
Funct Integr Genomics ; 21(5-6): 679-693, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34664160

RESUMO

Curd initiation and development are complex traits and highly responsive for different temperature ranges in cauliflower. The present study was aimed to identify QTLs for eight traits associated with curding behaviour in diverse germplasm of Indian cauliflower. For this, 92 genotypes of cauliflower and 2 each of tropical broccoli and cabbage were genotyped through genotyping by sequencing (GBS). It generated ≈302 million reads (9.1226E + 10 bp) and identified 35,381 SNPs, maximum from chromosome 3 (4735) with a mean value of 3981.1 SNPs. Ts/Tv ratio was 1.74, suggesting transition bias. STRUCTURE analysis revealed delta value of K = 4 and four subpopulations and prominence of population admixture. In total, 121 significant SNPs were detected for eight traits, 38 for Delhi (North Indian plain) and 83 for Barapani (North-East India). Twelve QTLs were detected for traits associated with regulation of curd formation and development, five of which were for marketable curd length, curd width, days to 50% curd harvest and marketable curd weight from Delhi region and seven for curd length, curd width, days to 50% curd harvest, gross plant weight, leaf length, marketable/net curd weight and number of leaves per plant for Barapani area of North East India. The SNPs identified will be useful for development of markers for curding-related traits and their use in breeding varieties with wider curding plasticity.


Assuntos
Brassica/genética , Genótipo , Locos de Características Quantitativas/genética , Técnicas de Genotipagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
7.
PLoS One ; 11(3): e0152290, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023128

RESUMO

Black rot caused by Xanthomonas campestris pv. campestris (Pam.) Dowson is the most destructive disease of cauliflower causing huge loss to the farmers throughout the world. Since there are limited sources of resistance to black rot in B. oleracea (C genome Brassica), exploration of A and B genomes of Brassica was planned as these were thought to be potential reservoirs of black rot resistance gene(s). In our search for new gene(s) for black rot resistance, F2 mapping population was developed in Brassica carinata (BBCC) by crossing NPC-17, a susceptible genotype with NPC-9, a resistant genotype. Out of 364 Intron length polymorphic markers and microsatellite primers used in this study, 41 distinguished the parental lines. However, resistant and susceptible bulks could be distinguished by three markers At1g70610, SSR Na14-G02 and At1g71865 which were used for genotyping of F2 mapping population. These markers were placed along the resistance gene, according to order, covering a distance of 36.30 cM. Intron length polymorphic markers At1g70610 and At1g71865 were found to be linked to black rot resistance locus (Xca1bc) at 6.2 and 12.8 cM distance, respectively. This is the first report of identification of markers linked to Xca1bc locus in Brassica carinata on B-7 linkage group. Intron length polymorphic markers provided a novel and attractive option for marker assisted selection due to high cross transferability and cost effectiveness for marker assisted alien gene introgression into cauliflower.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Resistência à Doença/genética , Loci Gênicos , Mostardeira/genética , Doenças das Plantas/genética , Xanthomonas campestris/fisiologia , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Genótipo , Mostardeira/imunologia , Mostardeira/microbiologia , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA