Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 5(7): 3134-3145, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35758411

RESUMO

On the basis of the boron neutron capture therapy (BNCT) modality, we have designed and synthesized a zinc gallate (ZnGa2O4)-based nanoformulation for developing an innovative theranostic approach for cancer treatment. Initially, the (ZnGa1.995Cr0.005O4 or ZnGa2O4:(0.5%)Cr persistent luminescence nanoparticles (PLNPs) embedded on silica matrix were synthesized. Their surface functionalization was performed using organic synthesis strategies to attach the amine functional moieties which were further coupled with poly(vicinal diol). These diols were helpful for conjugation with 10B(OH)3, which subsequently served to couple with an in-house-synthesized variant of pH-(low)-insertion peptide (pHLIP) finally giving a tumor-targeting nanoformulation. Most importantly, the polymeric diols helped in conjugation of a substantial number of 10B to provide the therapeutic dose required for effective BNCT. This nanoformulation internalized substantially (∼80%) to WEHI-164 cancer cells within 6 h. Tumor homing studies indicated that the accumulation of this formulation at the acidic tumor site was within 2 h. The in vitro evaluation of the formulation against WEHI-164 cancer cells followed by neutron irradiation revealed its potent cytotoxicity with IC50 ∼ 25 µM. In the case of studies on animal models, the melanoma-induced C57BL/6 and fibrosarcoma-induced BALB/c mice were treated with formulations through intratumoral and intravenous injections, respectively, followed by neutron irradiation, leading to a significant killing of the cancer cells, which was evidenced by a reduction in tumor volume (75-80%) as compared with a control tumor. Furthermore, the histopathological studies confirmed a damaging effect only on tumor cells, while there was no sign of damage to the vital organs in treated mice as well as in controls.


Assuntos
Terapia por Captura de Nêutron de Boro , Melanoma , Nanopartículas , Animais , Luminescência , Camundongos , Camundongos Endogâmicos C57BL , Zinco
2.
ACS Appl Bio Mater ; 5(2): 583-597, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35025194

RESUMO

Exclusively red-emitting upconversion nanoparticles (UCNPs) with the composition NaErF4:0.5%Tm as a core and NaYF4 as a shell were synthesized for performing photodynamic therapy (PDT). A possible mechanism was proposed for core-shell UCNPs formation. For loading a maximum amount of 5-aminolevulinic acid (5-ALA), mesoporous silica coating was performed on UCNPs. Studies under dark conditions confirmed the biocompatibility of 5-ALA-loaded UCNPs formulation (UCNPs-5-ALA) with MCF-7 cells. Meanwhile, studies under light-exposed conditions exhibited effective cytotoxicity against MCF-7 cells. Studies employing D2O-based cell cultured media and addition of DABCO in cell culture established that the cell death was due to oxidation of cellular components by reactive oxygen species (ROS) triggering the apoptosis. The formation of ROS was confirmed by DCF(H)DA-based ROS analysis via fluorescence microscopy to demonstrate the ROS production, which mediates the programmed cell death. Additionally, we have validated the apoptosis in MCF-7 cells with flow cytometry analyses. This was further confirmed by an electrophoretic mobility shift assay on nuclear extract and measurement of mitochondrial membrane potential. In the case of animal model studies, the formulation UCNPs-5-ALA without irradiation (980 nm) did not possess any in vivo cytotoxicity on tumor-induced SCID mice and there was a minimum migration of UCNPs-5-ALA to the vital organs but maximum retention at the tumor site only. Meanwhile, only the mice treated with UCNPs-5-ALA and irradiated on the tumor region with 980 nm laser (500 mW) for 20 min possessed a tumor with a size reduced to about 75% as compared with the corresponding control groups. To the best of our knowledge, this type of study was conducted for the first time employing exclusively red-emitting phosphors for effective PDT.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Ácido Aminolevulínico/farmacologia , Animais , Camundongos , Camundongos SCID , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício
3.
Indian J Nucl Med ; 36(2): 140-147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385784

RESUMO

BACKGROUND AIMS AND OBJECTIVES: Cisplatin is extensively used in chemotherapy for treatment of a broad range of cancers. But its undesired side reactions with biomolecules that lead to severe side effects especially on kidney and nervous system, are limiting its clinical utility. To reduce its side effects, the kinetically inert Pt(IV) prodrug was recognized as an alternative approach from satisfactory results of preliminary experiments. But, its approval as anticancer drug for clinical use requires detailed investigations of its anticancer action and pharmacological pathways by employing its analogue which can be traced by a suitable technique. As a step closer towards translation of Pt(IV)-based prodrug from research to clinical level, a protocol for efficient synthesis of 195mPt-radiolabeled Pt(IV) prodrug was devised. MATERIALS AND METHODS: In order to achieve the aim, we started synthesis from elemental platinum avoiding lengthy steps. The synthesis protocol was standardized on its cold analogue, as [PtCl2(NH3)2(OCOCH2CH2COOH)2] which has been characterized with nuclear magnetic resonance (1H, 13C{1H} and 195Pt{1H}) spectroscopy, microanalyses and cyclic voltammetry. Also, cytotoxicity of [PtCl2(OCOCH2CH2COOH)2(NH3)2] was evaluated against MCF-7 human breast cancer cell lines using cisplatin as test control. RESULTS: Intrinsically, 195mPt-labeled analogue of prodrug was obtained with high radionuclidic and radiochemical purity. It was confirmed by chromatography and γ-ray spectrometry. CONCLUSION: The 195mPt-radiolabeled prodrug was synthesized in a facile manner. It can be utilized in evaluating the mechanism of anticancer action and pharmacokinetics by enabling synergistic use of molecular imaging and targeted drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA