Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570610

RESUMO

Phosphatidylcholine-specific phospholipase C (PC-PLC) is an enzyme that catalyzes the formation of the important secondary messengers phosphocholine and diacylglycerol (DAG) from phosphatidylcholine. Although PC-PLC has been linked to the progression of many pathological conditions, including cancer, atherosclerosis, inflammation and neuronal cell death, studies of PC-PLC on the protein level have been somewhat neglected with relatively scarce data. To date, the human gene expressing PC-PLC has not yet been found, and the only protein structure of PC-PLC that has been solved was from Bacillus cereus (PC-PLCBc). Nonetheless, there is evidence for PC-PLC activity as a human functional equivalent of its prokaryotic counterpart. Additionally, inhibitors of PC-PLCBc have been developed as potential therapeutic agents. The most notable classes include 2-aminohydroxamic acids, xanthates, N,N'-hydroxyureas, phospholipid analogues, 1,4-oxazepines, pyrido[3,4-b]indoles, morpholinobenzoic acids and univalent ions. However, many medicinal chemistry studies lack evidence for their cellular and in vivo effects, which hampers the progression of the inhibitors towards the clinic. This review outlines the pathological implications of PC-PLC and highlights current progress and future challenges in the development of PC-PLC inhibitors from the literature.


Assuntos
Fosfatidilcolinas , Fosfolipases Tipo C , Humanos , Fosfatidilcolinas/metabolismo
2.
Front Chem ; 9: 711345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746090

RESUMO

We identified a putative laccase from the thermophilic bacterium Geobacillus yumthangensis. The putative laccase was produced recombinantly and its ability to catalyse the degradation of aromatic organic pollutants was investigated. The putative laccase exhibits broad pH and temperature stability, and, notably, it could catalyse the degradation of organic dyes as well as toxic pollutants including bisphenol A, guaiacol and phenol with a redox mediator. Our work further demonstrates the potential of using oxidative enzymes to break down toxic chemicals that possess major threats to human health and the environment.

3.
Int J Biol Macromol ; 190: 574-584, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506861

RESUMO

Laccases are multi­copper oxidases that possess the potential for industrial wastewater treatments. In this study, a putative laccase from Sulfitobacter indolifex was recombinantly produced and characterised. The enzyme was found to be stable and active at low to ambient temperature and across a range of pH conditions. The ability of the putative bacterial laccase to catalyse the decolourisation of seven common industrial dyes was also examined. Our results showed that the putative laccase could efficiently decolourise Indigo Carmine, Coomassie Brilliant Blue R-250, Congo Red, Malachite Green and Alizarin in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as a redox mediator. Furthermore, the use of enzyme immobilisation technology to improve the operational stability and reusability of the putative laccase was also investigated. We found that immobilising the enzyme through the cross-linked enzyme aggregate method significantly improved its tolerance towards extreme pH as well as the presence of organic solvents. This work expands the arsenal of bacterial laccases available for the bioremediation of dye-containing wastewater.


Assuntos
Corantes/isolamento & purificação , Lacase/metabolismo , Compostos Orgânicos/isolamento & purificação , Rhodobacteraceae/enzimologia , Sequência de Aminoácidos , Cor , Cobre/metabolismo , Reagentes de Ligações Cruzadas/química , Ensaios Enzimáticos , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Lacase/química , Lacase/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Sais/química , Solventes/química , Temperatura
4.
Bioorg Med Chem Lett ; 38: 127857, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609661

RESUMO

Heat shock protein 90 (Hsp90) is an essential molecular chaperone that performs vital stress-related and housekeeping functions in cells and is a current therapeutic target for diseases such as cancers. Particularly, the development of Hsp90 C-terminal domain (CTD) inhibitors is highly desirable as inhibitors that target the N-terminal nucleotide-binding domain may cause unwanted biological effects. Herein, we report on the discovery of two drug-like novel Hsp90 CTD inhibitors by using virtual screening and intrinsic protein fluorescence quenching binding assays, paving the way for future development of new therapies that employ molecular chaperone inhibitors.


Assuntos
Descoberta de Drogas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Chaperonas Moleculares/farmacologia , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Estrutura Molecular , Relação Estrutura-Atividade
5.
Anal Methods ; 13(4): 491-496, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33432952

RESUMO

The Bacillus cereus phosphatidylcholine-specific phospholipase C (PC-PLCBc) is an enzyme that catalyses the hydrolysis of phosphatidylcholines into phosphocholine and 1,2-diacylglycerols. PC-PLCBc has found applications in both the food industry and in medicinal chemistry. Herein, we report our work in the development and optimisation of a matrix assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry-based assay to monitor PC-PLCBc activity. The use of one-phase and two-phase reaction systems to assess the inhibition of PC-PLCBc with different structural classes of inhibitors was compared. We also highlighted the advantage of our assay over the commonly used commercially available Amplex Red assay. This method will also be applicable to work on the activity and inhibition of other phospholipases.


Assuntos
Fosfatidilcolinas , Fosfolipases Tipo C , Bacillus cereus , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Chem Commun (Camb) ; 56(57): 7857-7860, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32583822

RESUMO

An investigation using recombinant ribosomal proteins and synthetic peptide models was conducted to uncover the effect of the introduction of a negative charge at the C-terminal tail of ribosomal protein S15. Our results help provide a chemical rationale towards understanding how G2019S LRRK2, a common clinical mutation, causes Parkinson's disease.


Assuntos
Mutação , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Microscopia Crioeletrônica , Humanos , Doença de Parkinson/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética
7.
Eur J Med Chem ; 187: 111919, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810783

RESUMO

Phosphatidylcholine-specific phospholipase C (PC-PLC) is a promising target for new anticancer treatment. Herein, we report our work in the discovery of novel drug-like PC-PLC inhibitors. Virtual screening led to the identification of promising hits from four different structural series that contain the molecular scaffold of benzenesulphonamides (10), pyrido[3,4-b]indoles (22), morpholinobenzoic acid (84) and benzamidobenzoic acid (80). 164 structural analogues were tested to investigate the chemical space around the hit series and to generate preliminary structurally activity relationships (SAR). Two of the pyrido[3,4-b]indoles (22_10 and 22_15) had comparable or better potency as D609, an established but non-drug-like PC-PLC inhibitor. Furthermore, three morpholinobenzoic acids (84, 84_4 and 84_5) had superior potency than D609. Therefore, this study paves the way towards the development of drug-like PL-PLC inhibitors as potential anticancer agents.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Ácido Benzoico/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores , Amidas/síntese química , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Ácido Benzoico/síntese química , Ácido Benzoico/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indóis/síntese química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA