Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
J Appl Biomater Funct Mater ; 22: 22808000231214359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38702952

RESUMO

Exploring high strength materials with a higher concentration of reinforcements in the alloy proves to be a challenging task. This research has explored magnesium-based composites (AZ31B alloy) with tungsten carbide reinforcements, enhancing strength for medical joint replacements via league championship optimisation. The primary objective is to enhance medical joint replacement biomaterials employing magnesium-based composites, emphasising the AZ31B alloy with tungsten carbide reinforcements. The stir casting method is utilised in the manufacture of magnesium matrix composites (MMCs), including varied percentages of tungsten carbide (WC). The mechanical characteristics, such as micro-hardness, tensile strength, and yield strength, have been assessed and compared with computational simulations. The wear studies have been carried out to analyse the tribological behaviour of the composites. Additionally, this study investigates the prediction of stress and the distribution of forces inside bone and joint structures, therefore offering significant contributions to the field of biomedical research. This research contemplates the use of magnesium-based MMCs for the discovery of biomaterials suitable for medical joint replacement. The study focuses on the magnesium alloy AZ31B, with particles ranging in size from 40 to 60 microns used as the matrix material. Moreover, the outcomes have revealed that when combined with MMCs based on AZ31B-magnesium matrix, the WC particle emerges as highly effective reinforcements for the fabrication of lightweight, high-strength biomedical composites. This study uses the league championship optimisation (LCO) approach to identify critical variables impacting the synthesis of Mg MMCs from an AZ31B-based magnesium alloy. The scanning electron microscopy (SEM) images are meticulously analysed to depict the dispersion of WC particulates and the interface among the magnesium (Mg) matrix and WC reinforcement. The SEM analysis has explored the mechanisms underlying particle pull-out, the characteristics of inter-particle zones, and the influence of the AZ31B matrix on the enhancement of the mechanical characteristics of the composites. The application of finite element analysis (FEA) is being used in order to make predictions regarding the distribution of stress and the interactions of forces within the model of the hip joint. This study has compared the physico-mechanical and tribological characteristics of WC to distinct combinations of 0%, 5%, 10% and 15%, and its impact on the performance improvements. SEM analysis has confirmed the findings' improved strength and hardness, particularly when 10%-15% of WC was incorporated. Following the incorporation of 10% of WC particles within Mg-alloy matrix, the outcomes of the study has exhibited enhanced strength and hardness, which furthermore has been evident by utilising SEM analysis. Using ANSYS, structural deformation and stress levels are predicted, along with strength characteristics such as additional hardness of 71 HRC, tensile strength of 140-150 MPa, and yield strength closer to 100-110 MPa. The simulations yield significant insights into the behaviour of the joint under various loading conditions, thus enhancing the study's significance in biomedical environments.


Assuntos
Ligas , Magnésio , Teste de Materiais , Ligas/química , Magnésio/química , Compostos de Tungstênio/química , Materiais Biocompatíveis/química , Humanos , Resistência à Tração , Articulação do Quadril
2.
ACS Omega ; 9(17): 18836-18853, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708196

RESUMO

An effort was being made to incorporate waste bagasse ash (WBA) both in carbonized and uncarbonized form into the formulation of Al6063 matrix-based metal matrix composites (MMC's) by partially substituting ceramic particles for them. In the process of developing composites, comparative research on carbonized WBA and uncarbonized bagasse powder was carried out in the role of reinforcement. Microstructure investigations revealed that carbonized WBA particles were properly distributed throughout the aluminum-base metal matrix alloy. They also had the appropriate level of wettability. The reinforcement of carbonized WBA particles in AA6063-based matrix material had a maximum tensile strength of 110 MPa and a maximal hardness of 39 BHN when 3.75 wt % of the particles were used. The deterioration in tensile strength (6.25 wt % of WBA) and the appearance of porosity and blowholes can be enumerated by tensile fractography-based scanning electron microscopy (SEM) analysis. The reinforcement of carbonized WBA particles in AA6063-based matrix material was found to have a maximal percent elongation of 14.42% and the highest fracture toughness of 15 Joules when 1.25 wt % of the particles were employed. For AA6063/3.75 wt % carbonized WBA-based MMC's, the minimum percent porosity was determined to be 5.83, and the minimum thermal expansion was found to be 45 mm3. As the percentage of reinforcement in bagasse-reinforced composites increases, the density of the material, the amount of corrosion loss, and the cost all decrease gradually. The AA6063 matrix, with a composition of 3.75 wt % carbonized WBA-based MMC's, had satisfactory specific strength and corrosion loss. The AA6063 alloy composite's microstructure analysis revealed that carbonized WBA enhanced the material's mechanical characteristics, contributing to its excellent mechanical capabilities. The results of the corrosion test showed that carbonized WBA-reinforced composites exhibited reduced weight loss due to corrosion, whereas uncarbonized bagasse powder was an inappropriate reinforcement. The SEM analysis of AA6063 alloy/3.75 wt % carbonized WBA ash reinforcement-based MMC's exposed to a 3.5 wt % NaCl solution has exhibited the development of corrosion pits as a result of localized attack by the corrosive environment. The thermal expansion test showed that the composite with uncarbonized bagasse powder as reinforcement have a high shrinkage rate in comparison with the composite with 3.75 wt %. The composite's mechanical characteristics and thermal stability were enhanced by the presence of hard phases like SiO2, Al2O3, Fe2O3, CaO, and MgO, as revealed by X-ray diffraction analysis. This made it suitable for use in a variety of applications.

3.
ACS Omega ; 9(17): 18813-18826, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708242

RESUMO

This study explored the impact of varying weight percentages of TiMoVWCr high-entropy alloy (HEA) powder addition on A356 composites produced using friction stir processing (FSP). Unlike previous research that often focused on singular aspects, such as mechanical properties, or microstructural analysis, this investigation systematically examined the multifaceted performance of A356 composites by comprehensively assessing the microstructure, interfacial bonding strength, mechanical properties, and wear behavior. The study identified a uniform distribution of TiMoVWCr HEA powder in the composition A356/2%Ti2%Mo2%V2%W2%Cr, highlighting the effectiveness of the FSP technique in achieving homogeneous dispersion. Strong bonding between the reinforcement and matrix material was observed in the same composition, indicating favorable interfacial characteristics. Mechanical properties, including tensile strength and hardness, were evaluated for various compositions, demonstrating significant improvements across the board. The addition of 2%Ti2%Mo2%V2%W2%Cr powder enhanced the tensile strength by 36.39%, while hardness improved by 62.71%. Similarly, wear resistance showed notable enhancements ranging from 35.56 to 48.89% for different compositions. Microstructural analysis revealed approximately 1640.59 grains per square inch for the A356/2%Ti2%Mo2%V2%W2%Cr processed composite at 500 magnifications. In reinforcing Al composites with Ti, Mo, V, W, and Cr high-entropy alloy (HEA) particles, each element imparted distinct benefits. Titanium (Ti) enhanced strength and wear resistance, molybdenum (Mo) contributed to improved hardness, vanadium (V) promoted hardenability, tungsten (W) enhanced wear resistance, and chromium (Cr) provided wear resistance and hardness. Anticipating the potential applications of the developed composite, the study suggests its suitability for the aerospace sector, particularly in casting lightweight yet high-strength parts such as aircraft components, engine components, and structural components, underlining the significance of the investigated TiMoVWCr HEA powder-modified A356 composites.

4.
ACS Appl Mater Interfaces ; 16(17): 22282-22293, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644562

RESUMO

Nonvolatile organic memristors have emerged as promising candidates for next-generation electronics, emphasizing the need for vertical device fabrication to attain a high density. Herein, we present a comprehensive investigation of high-performance organic memristors, fabricated in crossbar architecture with PTB7/Al-AlOx-nanocluster/PTB7 embedded between Al electrodes. PTB7 films were fabricated using the Unidirectional Floating Film Transfer Method, enabling independent uniform film fabrication in the Layer-by-Layer (LbL) configuration without disturbing underlying films. We examined the charge transport mechanism of our memristors using the Hubbard model highlighting the role of Al-AlOx-nanoclusters in switching-on the devices, due to the accumulation of bipolarons in the semiconducting layer. By varying the number of LbL films in the device architecture, the resistance of resistive states was systematically altered, enabling the fabrication of novel multilevel memristors. These multilevel devices exhibited excellent performance metrics, including enhanced memory density, high on-off ratio (>108), remarkable memory retention (>105 s), high endurance (87 on-off cycles), and rapid switching (∼100 ns). Furthermore, flexible memristors were fabricated, demonstrating consistent performance even under bending conditions, with a radius of 2.78 mm for >104 bending cycles. This study not only demonstrates the fundamental understanding of charge transport in organic memristors but also introduces novel device architectures with significant implications for high-density flexible applications.

5.
Chemphyschem ; 25(10): e202300950, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38511569

RESUMO

First principles-based computational and theoretical methods are constantly evolving trying to overcome the many obstacles towards a comprehensive understanding of electrochemical processes on an atomistic level. One of the major challenges has been the determination of reaction energetics under a constant potential. Here, a theoretical framework was proposed applying standard electronic structure methods and extrapolating to the infinite-cell size limit where reactions do not alter the potential. Today, electronically grand canonical modifications to electronic structure methods, holding the potential constant by varying the number of electrons in a finite simulation cell, become increasingly popular. In this perspective, we show that these two schemes are thermodynamically equivalent. Further, we link these methods to capacitive models of the interface, in the limit that the capacitance of the charging components (whether continuum or atomistic) are equal and invariant along the reaction pathway. We benchmark the three approaches with an example of alkali cation adsorption on Pt(111) showing that all three approaches converge in the cases of Li, Na and K. For Cs, however, strong deviation from the ideal conditions leads to a spread in the respective results. We discuss the latter by highlighting the cases of broken equivalence and assumptions among the approaches.

6.
Nanomedicine (Lond) ; 19(8): 671-688, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38426561

RESUMO

Aim: The development of carbon quantum dots (C-QDs) as nanotrackers to understand drug-pathogen interactions, virulence and multidrug resistance. Methods: Microwave synthesis of C-QDs was performed using citric acid and polyethylene glycol. Further, in vitro toxicity was evaluated and imaging applications were demonstrated in Candida albicans isolates. Results: Well-dispersed, ultra small C-QDs exhibited no cyto/microbial/reactive oxygen species-mediated toxicity and internalized effectively in Candida yeast and hyphal cells. C-QDs were employed for confocal imaging of drug-sensitive and -resistant cells, and a study of the yeast-to-hyphal transition using atomic force microscopy in Candida was conducted for the first time. Conclusion: These biocompatible C-QDs have promising potential as next-generation nanotrackers for in vitro and in vivo targeted cellular and live imaging, after functionalization with biomolecules and drugs.


Scientists have used radiolabeled drugs and radioactive tracking agents for the imaging and study of drug resistance in microbial pathogens. But, these radiolabeled drugs or radiotrackers pose health hazards and environmental risks. However, such limitations can be overcome by designing nontoxic, environment-friendly, nanotechnology-based fluorescent imaging agents. This study demonstrates the development and application of cost-effective, nontoxic carbon-based quantum dots for imaging of drug-sensitive and -resistant microbial strains and transition to different morphological forms (yeast-to-hyphae transition) in fungal pathogens. The results demonstrated the suitability of carbon quantum dots as next-generation nano-based bioimaging/tracking agents for cellular imaging. The availability of such nontoxic fluorescent tracking agents is likely to offer promising solutions in therapeutics and diagnostics by providing insight into various mechanisms and functional links related to drug resistance, virulence and pathogenicity.


Assuntos
Candida albicans , Pontos Quânticos , Carbono , Candida , Virulência
7.
Sci Rep ; 14(1): 5160, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431656

RESUMO

Deposition of high entropy alloy FeCoNiMnCu on SS-304 was carried out by microwave energy for application in "solid oxide fuel-cell (SOFC) interconnects". The ball-milling has been performed by taking "Fe, Co, Ni, Mn, and Cu" in equal 20 wt. % of before deposited on SS-304 substrate. The deposited steel with 20% Fe 20% Co 20% Ni 20% Mn 20% Cu high entropy alloy (HEA) was exposed to thermal-exposure in the air for up to 10 weeks at 800 °C. The uniform cladding distribution of 20% Fe 20% Co 20% Ni 20% Mn 20% Cu HEA particles can be apparently observed on SS-304 substrate by utilizing Scanning Electron Microscope (SEM), and Optical microscopy analysis. Homogeneity in the interfacial layer was evident by employing Scanning Electron Microscope (SEM) characterization. Results have indicated that after the thermal exposure of deposited steel with 20% Fe 20% Co 20% Ni 20% Mn 20% Cu in the air for up to ten weeks at 800 °C, a "protective Cr2O3 layer", and "high-entropy spinel coating" of (Fe, Co, Ni, Mn, Cu)3O4 have been formed. During microwave cladding, the emergence of harder-phases has contributed to the raised hardness. The wear behavior after coating of 20% Fe 20% Co 20% Ni 20% Mn 20% Cu HEA on SS-304 substrate has significantly enhanced due to the strengthened wear resistance and hardness of the coatings. Findings have exhibited that the formation of (Fe, Co, Ni, Mn, Cu)3O4 phase is a potential coating material for "SOFC interconnects" applications. Moreover, the cladding of SS304 with a composition of 20% Fe, 20% Co, 20% Ni, 20% Mn, and 20% Cu has demonstrated remarkable stability under thermal expansion studies. As the findings have revealed that the composite cladding has efficiently withstand significant variations in volume when subjected to elevated temperatures for a prolonged period of time, thus, exhibiting its superior thermal stability for SOFC-interconnect applications. Furthermore, the SEM images of the cladding surface, surface hardness, and tribocorrosion behavior of the coated material have been observed to identify the 20% Fe 20% Co 20% Ni 20% Mn 20% Cu HEA coating effect on SS-304 steel-substrate.

8.
Polymers (Basel) ; 16(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475398

RESUMO

Extended π-conjugation with backbone-planarity-driven π-π stacking dominates charge transport in semiconducting polymers (SCPs). The roles of SCP film morphology and macromolecular conformation concerning the substrate in influencing charge transport and its impact on device performance have been a subject of extensive debate. Face-on SCPs promote out-of-plane charge transport primarily through π-π stacking, with conjugated polymeric chains assisting transport in connecting crystalline domains, whereas edge-on SCPs promote in-plane charge transport primarily through conjugation and π-π stacking. In this work, we fabricated three different types of devices, namely, organic field effect transistors, organic Schottky diodes, and organic bistable memristors, as representatives of planar and vertical devices. We demonstrate that a planar device, i.e., an organic field effect transistor, performs well in an edge-on conformation exhibiting a field-effect mobility of 0.12 cm2V-1s-1 and on/off ratio >104, whereas vertical devices, i.e., organic Schottky diodes and organic memristors, perform well in a face-on conformation, exhibiting exceptionally high on/off ratios of ~107 and 106, respectively.

9.
ACS Appl Mater Interfaces ; 16(7): 8791-8801, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324918

RESUMO

Vanadium redox flow batteries (VRFBs) have emerged as promising solutions for stationary grid energy storage due to their high efficiency, scalability, safety, near room-temperature operation conditions, and the ability to independently size power and energy capacities. The performance of VRFBs heavily relies on the redox couple reactions of V2+/V3+ and VO2+/VO2+ on carbon electrodes. Therefore, a thorough understanding of the surface functionality of carbon electrodes and their propensity for degradation during electrochemical cycles is crucial for designing VRFBs with extended lifespans. In this study, we present a coupled experimental-theoretical approach based on carbon K edge X-ray absorption spectroscopy (XAS) to characterize carbon electrodes prepared under different conditions and identify relevant functional groups that contribute to unique spectroscopic features. Atomic models were created to represent functional groups, such as hydroxyl, carboxyl, methyl, and aldehyde, bonded to carbon atoms in either sp2 or sp3 environments. The interactions between functionalized carbon and various solvated vanadium complexes were modeled using density functional theory. A library of carbon K-edge XAS spectra was generated for distinct carbon atoms in different functional groups, both before and after interacting with solvated vanadium complexes. We demonstrate how these simulated spectra can be used to deconvolve ex situ experimental spectra measured from carbon electrodes and to track changes in the electrode composition following immersion in different electrolytes or extended cycling within a functional VRFB. By doing so, we identify the active species present on the carbon electrodes, which play a crucial role in determining their electrochemical performance.

10.
Sci Data ; 11(1): 180, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336857

RESUMO

Computing binding affinities is of great importance in drug discovery pipeline and its prediction using advanced machine learning methods still remains a major challenge as the existing datasets and models do not consider the dynamic features of protein-ligand interactions. To this end, we have developed PLAS-20k dataset, an extension of previously developed PLAS-5k, with 97,500 independent simulations on a total of 19,500 different protein-ligand complexes. Our results show good correlation with the available experimental values, performing better than docking scores. This holds true even for a subset of ligands that follows Lipinski's rule, and for diverse clusters of complex structures, thereby highlighting the importance of PLAS-20k dataset in developing new ML models. Along with this, our dataset is also beneficial in classifying strong and weak binders compared to docking. Further, OnionNet model has been retrained on PLAS-20k dataset and is provided as a baseline for the prediction of binding affinities. We believe that large-scale MD-based datasets along with trajectories will form new synergy, paving the way for accelerating drug discovery.


Assuntos
Ligantes , Proteínas , Descoberta de Drogas , Aprendizado de Máquina , Ligação Proteica , Proteínas/química , Humanos , Animais
11.
Sci Rep ; 14(1): 3217, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331942

RESUMO

The present investigation has employed recycled waste glass powder (WGP) and silicon nitride (Si3N4) as reinforcing-agents within AZ91D-matrix composites. The composites were fabricated by employing the vacuum stir casting technique to mitigate the effects of oxidation and to ensure homogeneity, uniformity, and superior wettability among the AZ91D-matrix and reinforcements. A microscopic study provided confirmation of a uniform dispersion of WGP and Si3N4 particles throughout the AZ91D-matrix. The tensile strength of the AZ91D/WGP/Si3N4 composites rise with the inclusion of WGP particulates by up to 1.5 percent in AZ91D/7.5% Si3N4. However, the tensile strength of the AZ91D/9%Si3N4 composite have showed maximum value as compared to other chosen formulations/combinations in the current investigation. The tensile strength of AZ91D/1.5% WGP/7.5% Si3N4 composites has strengthened up to 12.13 percent with the comparison of base alloy AZ91D-matrix. In A1 formulated composite, the amount of WGP particulate has enhanced the hardness of the AZ91D-alloy by up to 1.5 percent. Findings, nevertheless has exhibited that the A6 formulated composite had superior outcomes in terms of hardness. The incorporation of "reinforcing-constituent particulates" with 1.5%WGP + 7.5%Si3N4 combination within the AZ91D-matrix, has further increased fatigue-strength by around 57.84 percent. A weight-loss of 0.312 mg was being unveiled for the A1 formulated fabricated composite. The weight-loss for the A6 formulated fabricated composite, however, was reported to be 0.294 mg. At 5 N loads, 2 m/s sliding speed, and 1000 m of sliding distance, the developed 1.5%WGP/7.5%Si3N4/AZ91D composites was reported to have a rate of wear, and frictional coefficient of 0.0025 mm3/m and 0.315, respectively. The investigation employing scanning electron microscopy (SEM) identified the presence of corrosion pits on the surfaces that had undergone corrosion. These pits were found to be a result of localised surface assaults occurring in corrosive environments. Additionally, SEM pictures of the worn surfaces indicated the emergence of microcracks, which may be associated to the conditions of cyclic loading. Moreover, the tensile-fractography examination for the developed 1.5%WGP/7.5%Si3N4/AZ91D composites has exhibited the brittle fracture failure, including cracks and debonding phenomena. In addition, the EDS spectra-analysis have revealed an apparent existence of the observed Mg-peak, Si-peak, Al-peak, Ca-peak, and O-peak for the 1.5%WGP/7.5%Si3N4/AZ91D composites. Furthermore, the utilisation of X-ray diffraction analysis effectively determined the existence of hard phases inside the AZ91D-matrix, which significantly contributed to the reported enhancement in wear resistance. The development of harder-phases has included, α-Mg, Al12Mg17, SiO2, Si3N4, MgO, and CaO phases within the composite has been accountable for the enhancement of the tribomechanical, and wear-resistance characteristics of the AZ91D/WGP/Si3N4 composites. The Si3N4 has been discovered to have a substantial impact on enhancing mechanical performance and raising the resistance to wear.

12.
Plants (Basel) ; 13(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337989

RESUMO

Phosphate (P) is a crucial macronutrient for normal plant growth and development. The P availability in soils is a limitation factor, and understanding genetic factors playing roles in plant adaptation for improving P uptake is of great biological importance. Genome-wide association studies (GWAS) have become indispensable tools in unraveling the genetic basis of complex traits in various plant species. In this study, a comprehensive GWAS was conducted on diverse tomato (Solanum lycopersicum L.) accessions grown under normal and low P conditions for two weeks. Plant traits such as shoot height, primary root length, plant biomass, shoot inorganic content (SiP), and root inorganic content (RiP) were measured. Among several models of GWAS tested, the Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK) models were used for the identification of single nucleotide polymorphisms (SNPs). Among all the traits analyzed, significantly associated SNPs were recorded for PB, i.e., 1 SNP (SSL4.0CH10_49261145) under control P, SiP, i.e., 1 SNP (SSL4.0CH08_58433186) under control P and 1 SNP (SSL4.0CH08_51271168) under low P and RiP i.e., 2 SNPs (SSL4.0CH04_37267952 and SSL4.0CH09_4609062) under control P and 1 SNP (SSL4.0CH09_3930922) under low P condition. The identified SNPs served as genetic markers pinpointing regions of the tomato genome linked to P-responsive traits. The novel candidate genes associated with the identified SNPs were further analyzed for their protein-protein interactions using STRING. The study provided novel candidate genes, viz. Solyc10g050370 for PB under control, Solyc08g062490, and Solyc08g062500 for SiP and Solyc09g010450, Solyc09g010460, Solyc09g010690, and Solyc09g010710 for RiP under low P condition. These findings offer a glimpse into the genetic diversity of tomato accessions' responses to P uptake, highlighting the potential for tailored breeding programs to develop P-efficient tomato varieties that could adapt to varying soil conditions, making them crucial for sustainable agriculture and addressing global challenges, such as soil depletion and food security.

13.
Int J Biol Macromol ; 259(Pt 2): 129201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191110

RESUMO

Medical stents, artificial teeth, and grafts are just some of the many applications for additive manufacturing techniques like bio-degradable polylactic acid 3D printing. However, there are drawbacks associated with fused filament fabrication-fabricated objects, including poor surface quality, insufficient mechanical strength, and a lengthy construction time for even a relatively small object. Thus, this study aims to identify the finest polylactic acid 3D printing parameters to maximize print quality while minimizing energy use, print time, flexural and tensile strengths, average surface roughness, and print time, respectively. Specifically, the infill density, printing speed, and layer thickness are all variables that were selected. A full-central-composite design generated 20 samples to test the prediction models' experimental procedures. Validation trial tests were used to show that the experimental findings agreed with the predictions, and analysis of variance was used to verify the importance of the performance characteristics (ANOVA). At layer thickness = 0.26 mm, infill density = 84 %, and print speed = 68.87 mm/s, the following optimized values were measured for PLA: flexural strength = 70.1 MPa, tensile strength = 39.2 MPa, minimum surface roughness = 7.8 µm, print time = 47 min, and print energy = 0.18 kwh. Firms and clinicians may benefit from utilizing the developed, model to better predict the required surface characteristic for various aspects afore trials.


Assuntos
Citoesqueleto , Poliésteres , Fenômenos Físicos , Impressão Tridimensional
14.
Sci Rep ; 14(1): 2525, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291093

RESUMO

G-quadruplex (G4) structures have emerged as singular therapeutic targets for cancer and neurodegeneration. Autophagy, a crucial homeostatic mechanism of the cell, is often dysregulated in neurodegenerative diseases and cancers. We used QGRS mapper to identify 470 G4 sequences in MTOR, a key negative regulator of autophagy. We sought to identify a functional context by leveraging the effect of G4-targeting ligands on MTOR G4 sequences. The effect of Bis-4,3, a G4 selective dimeric carbocyanine dye, was compared with the known G4-stabilizing activity of the porphyrin, TMPyP4 in HeLa and SHSY-5Y cells. Our results show that treatment with G4-selective ligands downregulates MTOR RNA and mTOR protein expression levels. This is the first report describing G4 motifs in MTOR. This study indicates a possible role of G4 stabilizing ligands in induction of autophagy by downregulation of mTOR levels, albeit not precluding MTOR independent pathways.


Assuntos
Quadruplex G , Humanos , RNA , Serina-Treonina Quinases TOR , Células HeLa , Autofagia , Ligantes
15.
Nanomedicine (Lond) ; 19(5): 431-453, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38288611

RESUMO

Cancer cells need as much as 40-times more sugar than their normal cell counterparts. This sugar demand is attained by the excessive expression of inimitable transporters on the surface of cancer cells, driven by their voracious appetite for carbohydrates. Nanotechnological advances drive research utilizing ligand-directed therapeutics and diverse carbohydrate analogs. The precise delivery of these therapeutic cargos not only mitigates toxicity associated with chemotherapy but also reduces the grim toll of mortality and morbidity among patients. This in-depth review explores the potential of these ligands in advanced cancer treatment using nanoparticles. It offers a broader perspective beyond the usual ways we deliver drugs, potentially changing the way we fight cancer.


Assuntos
Nanopartículas , Neoplasias , Humanos , Açúcares/uso terapêutico , Sistemas de Liberação de Medicamentos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Carboidratos
16.
Int J Biol Macromol ; 256(Pt 2): 128518, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042322

RESUMO

Chemical modification of guar gum was done by graft copolymerization of monomer hydroxyethyl methacrylate (HEMA) using azobisisobutyronitrile (AIBN) as initiator. Optimal reaction parameters were settled by varying one reaction condition and keeping the other constant. The optimum reaction conditions worked out were solvent system: binary, [H2O] = 15.00 mL, [acetone] = 5.00 mL, [HEMA] = 82.217× 10-2 mol/L, [AIBN] = 3.333 × 10-2 mol/L, reaction time = 3 h, reaction temperature = 60 °C on to 1.00 g guar gum with Pg = 1694.6 and %GE = 68,704.152. Pure guar gum polymer and grafts were analyzed by several physicochemical investigation techniques like FTIR, SEM, XRD, EDX, and swelling studies. Percent swelling of the guar gum polymer and grafts was investigated at pH 2.2, 7.0, 7.4 and 9.4 concerning time. The finest yield of Ps was recorded at pH 9.4 with time 24 h for graft copolymer. Guar gum and grafted samples were explored for the sorption of toxic dye Bismarck brown Y from the aqueous solution with respect to variable contact time, pH, temperature and dye concentration so as to investigate the stimuli responsive sorption behaviour. Graft copolymers showed better results than guar gum with percent dye uptake (Du) of 97.588 % in 24 h contact time, 35 °C temperature, 9.4 pH at 150.00 ppm dye feed concentration as compared to Guar gum which only showed 85.260 % dye uptake at alike dye fed concentration. The kinetic behaviour of the polymeric samples was evaluated by applying many adsorption isotherms and kinetic models. The value of 1/n was between 0 â†’ 1 showing that there was physisorption of the BB dye that took place on the surface of the polymers. Thermodynamics of BB Y adsorption onto hydrogels was investigated concerning the Van't Hoff equation. -∆G° values obtained from the curve proved the spontanity of the process. Within the context of adsorption efficiency, an investigation was conducted to examine the process of sorption of Bismarck brown Y dye from aqueous solutions. The graft copolymers demonstrated remarkable adsorption abilities, achieving a dye uptake (Du) of 97.588 % over a 24-h period at a temperature of 35 °C, pH level of 9.4, and a dye concentration of 150.00 ppm. The raised adsorption capacity was additionally corroborated by the application of several adsorption isotherms and kinetic models, which indicated that physisorption is the prevailing process/mechanism. Additionally, the thermodynamic research, utilising the Van't Hoff equation, validated the spontaneity of the adsorption phenomenon, as evidenced by the presence of a negative ∆G° values. The thermodynamic analysis revealed herein establishes a strong scientific foundation for the effectiveness of adsorbent composed of graft copolymers based on guar gum. The research conclude the efficiency of the guar gum based grafted copolymers for the water remediation as efficient adsorbents. The captured dye can be re-utilised and the hydrogels can be used for the same purpose in number of cycles.


Assuntos
Galactanos , Hidrogéis , Mananas , Metacrilatos , Nitrilas , Poluentes Químicos da Água , Hidrogéis/química , Gomas Vegetais/química , Corantes/química , Água/química , Termodinâmica , Polímeros/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/química
17.
Environ Res ; 244: 117707, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008206

RESUMO

The production and utilization of plastics may prove beneficial, but the environmental impact suggests the opposite. The single-use plastics (SUP) and conventional plastics are harmful to the environment and need prompt disposal. Bioplastics are increasingly being considered as a viable alternative to conventional plastics due to their potential to alleviate environmental concerns such as greenhouse gas emissions and pollution. However, the previous reviews revealed a lack of consistency in the methodologies used in the Life Cycle Assessments (LCAs), making it difficult to compare the results across studies. The current study provides a systematic review of LCAs that assess the environmental impact of bioplastics. The different mechanical characteristics of bio plastics, like tensile strength, Young's modulus, flexural modulus, and elongation at break are reviewed which suggest that bio plastics are comparatively much better than synthetic plastics. Bioplastics have more efficient mechanical properties compared to synthetic plastics which signifies that bioplastics are more sustainable and reliable than synthetic plastics. The key challenges in bioplastic adoption and production include competition with food production for feedstock, high production costs, uncertainty in end-of-life management, limited biodegradability, lack of standardization, and technical performance limitations. Addressing these challenges requires collaboration among stakeholders to drive innovation, reduce costs, improve end-of-life management, and promote awareness and education. Overall, the study suggests that while bioplastics have the potential to reduce environmental impact, further research is needed to better understand their life cycle and optimize their end-of-life (EoL) management and production to maximize their environmental benefits.


Assuntos
Poluição Ambiental , Plásticos , Biopolímeros
18.
ACS Nanosci Au ; 3(6): 491-499, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38144702

RESUMO

Iron phosphide (FeP) nanoparticles have excellent properties such as fast charge transfer kinetics, high electrical conductivity, and high stability, making them a promising catalyst for hydrogen evolution reaction (HER). A challenge to the wide use of iron phosphide nanomaterials for this application is the available synthesis protocols that limit control over the resulting crystalline phase of the product. In this study, we report a method for synthesizing FeP through a solution-based process. Here, we use iron oxyhydroxide (ß-FeOOH) as a cost-effective, environmentally friendly, and air-stable source of iron, along with tri-n-octylphosphine (TOP) as the phosphorus source and solvent. FeP is formed in a nanobundle morphology in the solution phase reaction at a temperature of 320 °C. The materials were characterized by pXRD and transmission electron microscopy (TEM). The optimization parameters evaluated to produce the phosphorus-rich FeP phase included the reaction rate, time, amount of TOP, and reaction temperature. Mixtures of Fe2P and FeP phases were obtained at shorter reaction times and slow heating rates (4.5 °C /min), while longer reaction times and faster heating rates (18.8 °C/min) favored the formation of phosphorus-rich FeP. Overall, the reaction lever that consistently yielded FeP as the predominant crystalline phase was a fast heat rate.

19.
Cureus ; 15(10): e47555, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021581

RESUMO

Globally, non-communicable diseases (NCDs) and communicable diseases (CDs) are on the rise, posing a significant public health threat. A holistic ayurvedic preparation called chyawanprash (CP) has shown positive outcomes in NCDs and CDs. Hence, we aimed to report the outcomes in a systematic manner. To determine the safety, efficacy, healthcare utilization, and quality of life of CP as an optional therapy for NCD and CD management. This systematic review will adhere to PRISMA-P and Cochrane guidelines for methodological considerations. It will evaluate CP efficacy in diverse populations, considering Ayurvedic and non-Ayurvedic comparators. The study design will encompass randomized controlled trials (RCTs) published from 2010 to 2023 in healthcare settings, controlled environments, and communities. We will also analyze primary outcomes related to immunity biomarkers, vital signs, and secondary outcomes such as quality of life. Data sources and search strategy will involve systematic searches in databases such as Cochrane, PubMed, Google Scholar, Web of Science, and Scopus using MeSH terms and Boolean operators. Screening and data extraction will follow a standardized form with four independent reviewers. Quality assessment will use the Cochrane risk of bias tool. The systematic review will provide an exhaustive summary of the effectiveness and safety of CP to address the growing burden of NCDs and CDs. Registration: CRD42023418994.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37953615

RESUMO

INTRODUCTION: Recent evidence suggests that systemic inflammation not only plays an important role in the pathogenesis of Acute Coronary Syndrome but also correlates with disease severity. Monocyte-to-high-density lipoprotein cholesterol ratio (MHR), Neutrophil-Lymphocyte Ratio (NLR), and Monocyte-Lymphocyte Ratio (MLR) are novel systemic inflammation markers used for predicting the burden of coronary artery disease (CAD) based on SYNTAX Score. This single-center, cross-sectional, observational study compared the association of these novel hematological indices with CAD severity using the SYNTAX Score in ACS patients and aimed to determine the best predictor of the severity of CAD. METHODS: A total of 403 consecutive patients with ACS who underwent coronary angiography were enrolled. On the basis of the SYNTAX Score, patients were divided into three groups: Low: <22, Moderate 22 - 32 and High ≥ 32. MHR, MLR, and NLR were calculated and correlated with SYNTAX Score. RESULTS: All three indices: MHR (r=0.511; p <0.001), MLR (r=0.373; p <0.001), and NLR (r=0.292; p =0.001) showed significant correlation with SYNTAX Score. The MHR ROC was significantly higher than that of MLR (difference between area: 0.158; 95% CI: 0.079-0.259) and NLR (difference between area: 0.279; 95% CI: 0.172-0.419) for the SYNTAX Score. Analysis showed a strong correlation between these indices with SYNTAX Score >22 compared to low scores <22 and that these also related to the LAD as an infarct artery. Multiple regression analysis showed that diabetes mellitus, eGFR, Infarct-related artery left anterior descending (IRALAD), MHR, MLR, and NLR were predictors of the severity of CAD in ACS patients based on SYNTAX Score. CONCLUSION: In ACS patients MHR, MLR, and NLR showed significant correlation with SYNTAX score >22 which may be indicative of severity of disease. MHR is a better predictor of the severity of CAD than MLR and NLR in ACS patients.


Assuntos
Síndrome Coronariana Aguda , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico , Síndrome Coronariana Aguda/diagnóstico , Estudos Transversais , Inflamação , Infarto , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA