Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 844: 146818, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35985412

RESUMO

Thaumatin-like protein (TLP) is the well-known sweetest protein which plays a crucial role in diverse developmental processes and different stress conditions in plants, fungi and animals. The TLP gene family is extensively studied in different plant species including crop plants. Watermelon (Citrullus lanatus) is an important cucurbit crop cultivated worldwide; however, the comprehensive information about the TLP gene family is not available in watermelon. In the present study, we identified the 29 TLP genes as gene family members in watermelon using various computational methods to understand its role in different developmental processes and stress conditions. ClaTLP gene family members were not uniformly distributed on 22 chromosomes. Phylogenetic analysis revealed that the ClaTLP gene family members were grouped into 10 sub-groups. Further, gene duplication analysis showed thirteen gene duplication events which included one tandem and twelve segmental duplications. Amino acid sequence alignment has shown that ClaTLP proteins shared 16 conserved cysteine residues in their THN domain. Furthermore, cis-acting regulatory elements analysis also displayed that ClaTLP gene family members contain diverse phytohormone, various defense, and stress-responsive elements in their promoter region. The expression profile of the ClaTLP gene family revealed the differential expression of gene family members in different tissues and abiotic stresses conditions. Moreover, the expression profile of ClaTLP genes was further validated by semi-quantitative reverse transcriptase PCR. Taken together, these results indicate that ClaTLP genes might play an important role in developmental processes and diverse stress conditions. Therefore, the outcome of this study brings forth the valuable information for further interpret the precise role of ClaTLP gene family members in watermelon.


Assuntos
Citrullus , Citrullus/genética , Citrullus/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
2.
J Appl Genet ; 63(2): 237-263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35106708

RESUMO

Lagenaria siceraria (Molina) Standley is an important cultivated crop with its immense importance in pharmaceutical industry and as vegetable. Its seed, root, stem, leaves, flower, and fruit are used as an ointment for ailment of various diseases throughout Asia. Despite its worldwide importance, informative co-dominant microsatellite markers in the bottle gourd crop are very restricted, impeding genetic improvement, cultivar identification, and phylogenetic studies. Next-generation sequencing has revolutionized the approaches for discovery, assessment, and validation of molecular markers. We conducted a genome-wide analysis, for developing SSR markers by utilizing restriction site-associated DNA sequencing (RAD-Seq) data obtained from NCBI. By performing in silico mining of microsatellite repeat motifs, we developed 45,066 perfect SSR markers. Of which 207 markers were successfully validated and 120 (57.97%) polymorphic primer pairs were utilized for an in-depth genetic diversity and population structure analysis of 96 accessions from the National Genebank of India. Tetranucleotide repeats (∼34.3%) were the most prevalent followed by trinucleotide repeats (∼30.73%), further 21.03%, 9.6%, and 4.3% of di-, penta-, and hexa-nucleotide repeats in the bottle gourd genome, respectively. Synteny of SSR markers on 11 bottle gourd linkage groups was correlated with the 7 chromosomes of cucumber (93.2%), 12 chromosomes of melon (87.4%), and 11 of watermelon (90.8%). The generated SSR markers provide a valuable tool for germplasm characterization, genetic linkage map construction, studying synteny, gene discovery, and for breeding in bottle gourd and other cucurbits species. KEY MESSAGE: Development of 45,066 perfect microsatellite markers as a valuable tool for marker assisted selection (MAS) in plant breeding.


Assuntos
Genoma de Planta , Melhoramento Vegetal , Variação Genética , Repetições de Microssatélites , Filogenia , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA