Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 21(3): 417-422, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31318464

RESUMO

The rare nonproteinogenic amino acid, meta-l-tyrosine is biosynthetically intriguing. Whilst the biogenesis of tyrosine from phenylalanine is well characterised, the mechanistic basis for meta-hydroxylation is unknown. Herein, we report the analysis of 3-hydroxylase (Phe3H) from Streptomyces coeruleorubidus. Insights from kinetic analyses of the wild-type enzyme and key mutants as well as of the biocatalytic conversion of synthetic isotopically labelled substrates and fluorinated substrate analogues advance understanding of the process by which meta-hydroxylation is mediated, revealing T202 to play an important role. In the case of the WT enzyme, a deuterium label at the 3-position is lost, whereas in in the T202A mutant 75 % retention is observed, with loss of stereospecificity. These data suggest that one of two possible mechanisms is at play; direct, enzyme-catalysed deprotonation following electrophilic aromatic substitution or stereospecific loss of one proton after a 1,2-hydride shift. Furthermore, our kinetic parameters for Phe3H show efficient regiospecific generation of meta-l-tyrosine from phenylalanine and demonstrate the enzyme's ability to regiospecifically hydroxylate unnatural fluorinated substrates.


Assuntos
Aminoácidos Aromáticos/metabolismo , Fenilalanina Hidroxilase/metabolismo , Aminoácidos Aromáticos/química , Hidroxilação , Estrutura Molecular , Fenilalanina Hidroxilase/química , Streptomyces/enzimologia
2.
PLoS One ; 8(12): e82312, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367515

RESUMO

Liver failure is an increasing problem. Donor-organ shortage results in patients dying before receiving a transplant. Since the liver can regenerate, alternative therapies providing temporary liver-support are sought. A bioartificial-liver would temporarily substitute function in liver failure buying time for liver regeneration/organ-procurement. Our aim: to develop a prototype bioartificial-liver-machine (BAL) comprising a human liver-derived cell-line, cultured to phenotypic competence and deliverable in a clinical setting to sites distant from its preparation. The objective of this study was to determine whether its use would improve functional parameters of liver failure in pigs with acute liver failure, to provide proof-of-principle. HepG2 cells encapsulated in alginate-beads, proliferated in a fluidised-bed-bioreactor providing a biomass of 4-6 × 10(10)cells, were transported from preparation-laboratory to point-of-use operating theatre (6000 miles) under perfluorodecalin at ambient temperature. Irreversible ischaemic liver failure was induced in anaesthetised pigs, after portal-systemic-shunt, by hepatic-artery-ligation. Biochemical parameters, intracranial pressure, and functional-clotting were measured in animals connected in an extracorporeal bioartificial-liver circuit. Efficacy was demonstrated comparing outcomes between animals connected to a circuit containing alginate-encapsulated cells (Cell-bead BAL), and those connected to circuit containing alginate capsules without cells (Empty-bead BAL). Cells of the biomass met regulatory standards for sterility and provenance. All animals developed progressive liver-failure after ischaemia induction. Efficacy of BAL was demonstrated since animals connected to a functional biomass (+ cells) had significantly smaller rises in intracranial pressure, lower ammonia levels, more bilirubin conjugation, improved acidosis and clotting restoration compared to animals connected to the circuit without cells. In the +cell group, human proteins accumulated in pigs' plasma. Delivery of biomass using a short-term cold-chain enabled transport and use without loss of function over 3 days. Thus, a fluidised-bed bioreactor containing alginate-encapsulated HepG2 cell-spheroids improved important parameters of acute liver failure in pigs. The system can readily be up-scaled and transported to point-of-use justifying development at clinical scale.


Assuntos
Hepatócitos/citologia , Falência Hepática Aguda/patologia , Falência Hepática Aguda/cirurgia , Fígado Artificial , Esferoides Celulares/citologia , Animais , Reatores Biológicos , Sobrevivência Celular/fisiologia , Feminino , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Falência Hepática Aguda/metabolismo , Esferoides Celulares/metabolismo , Suínos
3.
Biores Open Access ; 2(1): 1-11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23514704

RESUMO

Acute liver failure has a high mortality unless patients receive a liver transplant; however, there are insufficient donor organs to meet the clinical need. The liver may rapidly recover from acute injury by hepatic cell regeneration given time. A bioartificial liver machine can provide temporary liver support to enable such regeneration to occur. We developed a bioartificial liver machine using human-derived liver cells encapsulated in alginate, cultured in a fluidized bed bioreactor to a level of function suitable for clinical use (performance competence). HepG2 cells were encapsulated in alginate using a JetCutter to produce ∼500 µm spherical beads containing cells at ∼1.75 million cells/mL beads. Within the beads, encapsulated cells proliferated to form compact cell spheroids (AELS) with good cell-to-cell contact and cell function, that were analyzed functionally and by gene expression at mRNA and protein levels. We established a methodology to enable a ∼34-fold increase in cell density within the AELS over 11-13 days, maintaining cell viability. Optimized nutrient and oxygen provision were numerically modeled and tested experimentally, achieving a cell density at harvest of >45 million cells/mL beads; >5×10(10) cells were produced in 1100 mL of beads. This process is scalable to human size ([0.7-1]×10(11)). A short-term storage protocol at ambient temperature was established, enabling transport from laboratory to bedside over 48 h, appropriate for clinical translation of a manufactured bioartificial liver machine.

4.
Kidney Int ; 66(5): 1994-2003, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15496171

RESUMO

BACKGROUND: Quantitative data on protein and polypeptide excretion in normal urine are lacking. In Fanconi syndrome, failure of proximal tubular protein reabsorption leads to 'tubular' proteinuria, but little is known about peptide excretion. METHODS: Urine from normal (N=5) and Fanconi patients (Dent's disease, N=2; Lowe syndrome, N=3) was fractionated by size-exclusion chromatography into proteins (>10 kD) and smaller polypeptides. Each fraction was subjected to amino acid analysis after acid hydrolysis. In complementary proteomic approaches, urinary polypeptides were each subjected to reversed-phase high-performance liquid chromatography (HPLC) followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and nano-flow liquid chromatography directly coupled to electrospray ionization/tandem mass spectrometry (NanoLC-ESI-MS/MS) before and after tryptic digestion. RESULTS: Based on amino acid composition, normal human urine, excluding Tamm-Horsfall protein, contains 33.7 +/- 10.7 mg protein per 24 hr (mean +/- SEM) protein defined as polypeptide >10 kD; peptide content in range 750 Da to 10 kD is 22.0 +/- 9.6 mg. Fanconi patients excrete greatly increased amounts of protein, 1740 +/- 660 mg/24 hr, and peptide, 446 +/- 145 mg/24 hr. Peptides 2 to 5 kD were present in 12.9- +/- 3.9-fold excess in Fanconi compared with normal urine. In contrast, free amino acid excretion in Fanconi was elevated only 2.14- +/- 0.73-fold. Mass spectrometric techniques determined that the major form of albumin in both normal and Fanconi urine was the full-length protein, and did not detect significant peptides of nonrenal origin. CONCLUSION: There is only very low excretion of polypeptides >750 Da in normal human urine. In Fanconi syndrome, excretion of unknown peptides of mass 2 to 5 kD, possibly relevant to the development of renal failure, is greatly increased.


Assuntos
Aminoácidos/urina , Síndrome de Fanconi/urina , Peptídeos/química , Peptídeos/urina , Proteômica , Estudos de Casos e Controles , Cromatografia em Gel , Humanos , Peso Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA