Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 8(1): e2300127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37786311

RESUMO

Kidney ischemia reperfusion injury (IRI) poses a major global healthcare burden, but effective treatments remain elusive. IRI involves a complex interplay of tissue-level structural and functional changes caused by interruptions in blood and filtrate flow and reduced oxygenation. Existing in vitro models poorly replicate the in vivo injury environment and lack means of monitoring tissue function during the injury process. Here, a high-throughput human primary kidney proximal tubule (PT)-microvascular model is described, which facilitates in-depth structural and rapid functional characterization of IRI-induced changes in the tissue barrier. The PREDICT96 (P96) microfluidic platform's user-controlled fluid flow can mimic the conditions of IR to induce pronounced changes in cell structure that resemble clinical and in vivo phenotypes. High-throughput trans-epi/endo-thelial electrical resistance (TEER) sensing is applied to non-invasively track functional changes in the PT-microvascular barrier during the two-stage injury process and over repeated episodes of injury. Notably, ischemia causes an initial increase in tissue TEER followed by a sudden increase in permeability upon reperfusion, and this biphasic response occurs only with the loss of both fluid flow and oxygenation. This study demonstrates the potential of the P96 kidney IRI model to enhance understanding of IRI and fuel therapeutic development.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Injúria Renal Aguda/tratamento farmacológico , Rim/irrigação sanguínea , Túbulos Renais Proximais , Traumatismo por Reperfusão/tratamento farmacológico
2.
Analyst ; 148(14): 3204-3216, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37307041

RESUMO

High-throughput, rapid and non-invasive readouts of tissue health in microfluidic kidney co-culture models would expand their capabilities for pre-clinical assessment of drug-induced nephrotoxicity. Here, we demonstrate a technique for monitoring steady state oxygen levels in PREDICT96-O2, a high-throughput organ-on-chip platform with integrated optical-based oxygen sensors, for evaluation of drug-induced nephrotoxicity in a human microfluidic co-culture model of the kidney proximal tubule (PT). Oxygen consumption measurements in PREDICT96-O2 detected dose and time-dependent injury responses of human PT cells to cisplatin, a drug with known toxic effects in the PT. The injury concentration threshold of cisplatin decreased exponentially from 19.8 µM after 1 day to 2.3 µM following a clinically relevant exposure duration of 5 days. Additionally, oxygen consumption measurements resulted in a more robust and expected dose-dependent injury response over multiple days of cisplatin exposure compared to colorimetric-based cytotoxicity readouts. The results of this study demonstrate the utility of steady state oxygen measurements as a rapid, non-invasive, and kinetic readout of drug-induced injury in high-throughput microfluidic kidney co-culture models.


Assuntos
Cisplatino , Rim , Humanos , Cisplatino/toxicidade , Túbulos Renais Proximais , Microfluídica , Técnicas de Cocultura
3.
Microsyst Nanoeng ; 8: 109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187891

RESUMO

Measurement of cell metabolism in moderate-throughput to high-throughput organ-on-chip (OOC) systems would expand the range of data collected for studying drug effects or disease in physiologically relevant tissue models. However, current measurement approaches rely on fluorescent imaging or colorimetric assays that are focused on endpoints, require labels or added substrates, and lack real-time data. Here, we integrated optical-based oxygen sensors in a high-throughput OOC platform and developed an approach for monitoring cell metabolic activity in an array of membrane bilayer devices. Each membrane bilayer device supported a culture of human renal proximal tubule epithelial cells on a porous membrane suspended between two microchannels and exposed to controlled, unidirectional perfusion and physiologically relevant shear stress for several days. For the first time, we measured changes in oxygen in a membrane bilayer format and used a finite element analysis model to estimate cell oxygen consumption rates (OCRs), allowing comparison with OCRs from other cell culture systems. Finally, we demonstrated label-free detection of metabolic shifts in human renal proximal tubule cells following exposure to FCCP, a drug known for increasing cell oxygen consumption, as well as oligomycin and antimycin A, drugs known for decreasing cell oxygen consumption. The capability to measure cell OCRs and detect metabolic shifts in an array of membrane bilayer devices contained within an industry standard microtiter plate format will be valuable for analyzing flow-responsive and physiologically complex tissues during drug development and disease research.

4.
Sci Rep ; 12(1): 13182, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915212

RESUMO

Rapid non-invasive kidney-specific readouts are essential to maximizing the potential of microfluidic tissue culture platforms for drug-induced nephrotoxicity screening. Transepithelial electrical resistance (TEER) is a well-established technique, but it has yet to be evaluated as a metric of toxicity in a kidney proximal tubule (PT) model that recapitulates the high permeability of the native tissue and is also suitable for high-throughput screening. We utilized the PREDICT96 high-throughput microfluidic platform, which has rapid TEER measurement capability and multi-flow control, to evaluate the utility of TEER sensing for detecting cisplatin-induced toxicity in a human primary PT model under both mono- and co-culture conditions as well as two levels of fluid shear stress (FSS). Changes in TEER of PT-microvascular co-cultures followed a dose-dependent trend similar to that demonstrated by lactate dehydrogenase (LDH) cytotoxicity assays and were well-correlated with tight junction coverage after cisplatin exposure. Additionally, cisplatin-induced changes in TEER were detectable prior to increases in cell death in co-cultures. PT mono-cultures had a less differentiated phenotype and were not conducive to toxicity monitoring with TEER. The results of this study demonstrate that TEER has potential as a rapid, early, and label-free indicator of toxicity in microfluidic PT-microvascular co-culture models.


Assuntos
Cisplatino , Microfluídica , Cisplatino/metabolismo , Cisplatino/toxicidade , Impedância Elétrica , Humanos , Túbulos Renais Proximais/metabolismo , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA