Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(2): e2300338, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375561

RESUMO

Chinese hamster ovary (CHO) cells are widely used to produce complex biopharmaceuticals. Improving their productivity is necessary to fulfill the growing demand for such products. One way to enhance productivity is by cultivating cells at high densities, but inhibitory by-products, such as metabolite derivatives from amino acid degradation, can hinder achieving high cell densities. This research examines the impact of these inhibitory by-products on high-density cultures. We cultured X1 and X2 CHO cell lines in a small-scale semi-perfusion system and introduced a mix of inhibitory by-products on day 10. The X1 and X2 cell lines were chosen for their varied responses to the by-products; X2 was susceptible, while X1 survived. Proteomics revealed that the X2 cell line presented changes in the proteins linked to apoptosis regulation, cell building block synthesis, cell growth, DNA repair, and energy metabolism. We later used the AB cell line, an apoptosis-resistant cell line, to validate the results. AB behaved similar to X1 under stress. We confirmed the activation of apoptosis in X2 using a caspase assay. This research provides insights into the mechanisms of cell death triggered by inhibitory by-products and can guide the optimization of CHO cell culture for biopharmaceutical manufacturing.


Assuntos
Aminoácidos , Apoptose , Cricetinae , Animais , Cricetulus , Células CHO , Apoptose/genética , Proliferação de Células
2.
Biotechnol Bioeng ; 121(4): 1371-1383, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38079117

RESUMO

Chinese Hamster Ovary (CHO) cells have rapidly become a cornerstone in biopharmaceutical production. Recently, a reinvigoration of perfusion culture mode in CHO cell cultivation has been observed. However, most cell lines currently in use have been engineered and adapted for fed-batch culture methods, and may not perform optimally under perfusion conditions. To improve the cell's resilience and viability during perfusion culture, we cultured a triple knockout CHO cell line, deficient in three apoptosis related genes BAX, BAK, and BOK in a perfusion system. After 20 days of culture, the cells exhibited a halt in cell proliferation. Interestingly, following this phase of growth arrest, the cells entered a second growth phase. During this phase, the cell numbers nearly doubled, but cell specific productivity decreased. We performed a proteomics investigation, elucidating a distinct correlation between growth arrest and cell cycle arrest and showing an upregulation of the central carbon metabolism and oxidative phosphorylation. The upregulation was partially reverted during the second growth phase, likely caused by intragenerational adaptations to stresses encountered. A phase-dependent response to oxidative stress was noted, indicating glutathione has only a secondary role during cell cycle arrest. Our data provides evidence of metabolic regulation under high cell density culturing conditions and demonstrates that cell growth arrest can be overcome. The acquired insights have the potential to not only enhance our understanding of cellular metabolism but also contribute to the development of superior cell lines for perfusion cultivation.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Cricetinae , Animais , Cricetulus , Células CHO , Técnicas de Cultura Celular por Lotes/métodos , Perfusão
3.
Biotechnol Prog ; 38(6): e3288, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35818846

RESUMO

The manufacturing scale implementation of membrane chromatography to purify monoclonal antibodies has gradually increased with the shift in industry focus toward flexible manufacturing and disposable technologies. Membrane chromatography are used to remove process-related impurities such as host cell proteins (HCPs) and DNA, leachates, and endotoxins, with improved productivity and process flexibility. However, application of membrane chromatography to separate product-related variants such as charge variants has not gained major traction due to low-binding capacity. The work reported here demonstrates that a holistic process development strategy to optimize static binding (pH and salt concentration) and dynamic process (membrane loading, flowrate, and gradient length) parameters can alleviate the capacity limitations. The study employed high throughput screening tools and scale-down membranes for intermediate and polishing purification of the model monoclonal antibody. An optimized process consisting of anion exchange and cation exchange membrane chromatography reduced the acidic variants present in Protein A eluate from 89.5% to 19.2% with 71% recovery of the target protein. The membrane chromatography process also cleared HCP to below limit of detection with 6- to 30-fold higher membrane loading, compared to earlier reported values. The results confirm that membrane chromatography is effective in separating closely related product variants when supported by a well-defined process development strategy.


Assuntos
Anticorpos Monoclonais , Cloreto de Sódio , Anticorpos Monoclonais/química , Cromatografia por Troca Iônica/métodos , Ânions , Cátions
4.
MAbs ; 14(1): 2083465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737825

RESUMO

The reliable and cost-efficient manufacturing of monoclonal antibodies (mAbs) is essential to fulfil their ever-growing demand. Cell death in bioreactors reduces productivity and product quality, and is largely attributed to apoptosis. In perfusion bioreactors, this leads to the necessity of a bleed stream, which negatively affects the overall process economy. To combat this limitation, death-resistant Chinese hamster ovary cell lines were developed by simultaneously knocking out the apoptosis effector proteins Bak1, Bax, and Bok with CRISPR technology. These cell lines were cultured in fed-batch and perfusion bioreactors and compared to an unmodified control cell line. In fed-batch, the death-resistant cell lines showed higher cell densities and longer culture durations, lasting nearly a month under standard culture conditions. In perfusion, the death-resistant cell lines showed slower drops in viability and displayed an arrest in cell division after which cell size increased instead. Pertinently, the death-resistant cell lines demonstrated the ability to be cultured for several weeks without bleed, and achieved similar volumetric productivities at lower cell densities than that of the control cell line. Perfusion culture reduced fragmentation of the mAb produced, and the death-resistant cell lines showed increased glycosylation in the light chain in both bioreactor modes. These data demonstrate that rationally engineered death-resistant cell lines are ideal for mAb production in perfusion culture, negating the need to bleed the bioreactor whilst maintaining product quantity and quality.


Assuntos
Anticorpos Monoclonais , Reatores Biológicos , Animais , Anticorpos Monoclonais/farmacologia , Técnicas de Cultura Celular por Lotes , Células CHO , Cricetinae , Cricetulus , Perfusão
5.
Biotechnol Bioeng ; 119(6): 1380-1391, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35180317

RESUMO

Chinese hamster ovary (CHO) cells are the primary platform for the production of biopharmaceuticals. To increase yields, many CHO cell lines have been genetically engineered to resist cell death. However, the kinetics that governs cell fate in bioreactors are confounded by many variables associated with batch processes. Here, we used CRISPR-Cas9 to create combinatorial knockouts of the three known BCL-2 family effector proteins: Bak1, Bax, and Bok. To assess the response to apoptotic stimuli, cell lines were cultured in the presence of four cytotoxic compounds with different mechanisms of action. A population-based model was developed to describe the behavior of the resulting viable cell dynamics as a function of genotype and treatment. Our results validated the synergistic antiapoptotic nature of Bak1 and Bax, while the deletion of Bok had no significant impact. Importantly, the uniform application of apoptotic stresses permitted direct observation and quantification of a delay in the onset of cell death through Bayesian inference of meaningful model parameters. In addition to the classical death rate, a delay function was found to be essential in the accurate modeling of the cell death response. These findings represent an important bridge between cell line engineering strategies and biological modeling in a bioprocess context.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Animais , Apoptose/genética , Teorema de Bayes , Células CHO , Cricetinae , Cricetulus , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
6.
Crit Rev Biotechnol ; 42(7): 1099-1115, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34844499

RESUMO

Much of the biopharmaceutical industry's success over the past 30 years has relied on products derived from Chinese Hamster Ovary (CHO) cell lines. During this time, improvements in mammalian cell cultures have come from cell line development and process optimization suited for large-scale fed-batch processes. Originally developed for high cell densities and sensitive products, perfusion processes have a long history. Driven by high volumetric titers and a small footprint, perfusion-based bioprocess research has regained an interest from academia and industry. The recent pandemic has further highlighted the need for such intensified biomanufacturing options. In this review, we outline the technical history of research in this field as it applies to biologics production in CHO cells. We demonstrate a number of emerging trends in the literature and corroborate these with underlying drivers in the commercial space. From these trends, we speculate that the future of perfusion bioprocesses is bright and that the fields of media optimization, continuous processing, and cell line engineering hold the greatest potential. Aligning in its continuous setup with the demands for Industry 4.0, perfusion biomanufacturing is likely to be a hot topic in the years to come.


Assuntos
Produtos Biológicos , Reatores Biológicos , Animais , Células CHO , Cricetinae , Cricetulus , Perfusão
7.
Biotechnol J ; 16(3): e2000309, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33006254

RESUMO

The need to intensify downstream processing of monoclonal antibodies to complement the advances in upstream productivity has led to increased attention toward implementing membrane technologies. With the industry moving toward continuous operations and single use processes, membrane technologies show promise in fulfilling the industry needs due to their operational flexibility and ease of implementation. Recently, the applicability of membrane-based unit operations in integrating the downstream process has been explored. In this article, the major developments in the application of membrane-based technologies in the bioprocessing of monoclonal antibodies are reviewed. The recent progress toward developing intensified end-to-end bioprocesses and the critical role membrane technology will play in achieving this goal are focused upon.


Assuntos
Anticorpos Monoclonais , Biotecnologia , Reatores Biológicos , Tecnologia Farmacêutica
8.
Biotechnol Bioeng ; 115(12): 2893-2907, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30080940

RESUMO

Rapid advances in intensifying upstream processes for biologics production have left downstream processing as a bottleneck in the manufacturing scheme. Biomanufacturers are pursuing continuous downstream process development to increase efficiency and flexibility, reduce footprint and cost of goods, and improve product consistency and quality. Even after successful laboratory trials, the implementation of a continuous process at manufacturing scale is not easy to achieve. This paper reviews specific challenges in converting each downstream unit operation to a continuous mode. Key elements of developing practical strategies for overcoming these challenges are detailed. These include equipment valve complexity, favorable column aspect ratio, protein-A resin selection, quantitative assessment of chromatogram peak size and shape, holistic process characterization approach, and a customized process economic evaluation. Overall, this study provides a comprehensive review of current trends and the path forward for implementing continuous downstream processing at the manufacturing scale.


Assuntos
Anticorpos Monoclonais , Reatores Biológicos , Biotecnologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Biotecnologia/métodos , Biotecnologia/normas , Biotecnologia/tendências , Cromatografia , Humanos , Membranas Artificiais
9.
Electrophoresis ; 28(13): 2291-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17557364

RESUMO

The Biflow, a new isoelectric trapping instrument was designed to obtain a narrow DeltapI fraction from a complex feed in one step. The Biflow contains two identical separation units, each unit houses: an anode and cathode compartment, an anodic and cathodic membrane, an anodic and cathodic separation compartment, and a separation membrane. The separation units are connected to independent power supplies. The anodic membranes in Units 1 and 2 typically buffer at the same pH value and so do the cathodic membranes. The separation membranes in Units 1 and 2 buffer at different pH values, these determine the pI range (DeltapI) of the product. The cathodic separation compartments in Units 1 and 2 contain the feed and harvest streams. The two anodic separation compartments, connected through an electrically insulating air gap, form the transfer loop through which the transfer stream is recirculated between Units 1 and 2. Ampholytic components in the feed, with pI values lower than the pH of the buffering membrane in Unit 1, pass into the transfer stream and are shuttled into Unit 2. In Unit 2, components in the transfer stream which have pI values higher than the pH of the buffering membrane in Unit 2, pass into the harvest stream. This double transfer of the target component, oppositely directed, guarantees the complete exclusion of products outside the desired DeltapI range from the harvest stream. The utility of the Biflow unit was demonstrated by isolating carnosine from a mixture of UV-absorbing ampholytes and ovalbumin isoforms as well as 4.4

Assuntos
Focalização Isoelétrica/instrumentação , Aminobenzoatos/isolamento & purificação , Animais , Carnosina/isolamento & purificação , Galinhas , Conalbumina/isolamento & purificação , Proteínas do Ovo/química , Concentração de Íons de Hidrogênio , Focalização Isoelétrica/métodos , Ovalbumina/isolamento & purificação , Tiramina/isolamento & purificação , meta-Aminobenzoatos
10.
J Chromatogr A ; 1155(2): 237-41, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17383662

RESUMO

A recirculating, preparative-scale isoelectric trapping device, developed for the binary isoelectric trapping separation of proteins has been used to desalt, isolate and enrich the pI<4 protein fraction from a 150 mL sample of bovine serum. Subsequent re-separation of the 2

Assuntos
Proteínas Sanguíneas/isolamento & purificação , Bovinos/sangue , Focalização Isoelétrica/métodos , Animais , Ponto Isoelétrico , Proteômica
11.
Electrophoresis ; 28(4): 587-94, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17226758

RESUMO

The pH transients that occur during isoelectric trapping separations as a result of the removal of nonampholytic ionic components have been re-examined. Salts containing strong electrolyte anions and cations, both with equal and dissimilar mobilities, have been studied using anodic and cathodic buffering membranes whose pH values were both equidistant and nonequidistant from pH 7. The direction and magnitude of the pH transient (acidic or basic) was found to depend on both the mobilities of the anion and cation (mu(anion)/mu(cation)) and the pH difference between pH 7 and the pH of the buffering membranes (|pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)|). When |pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)| = 1, mu(anion)/mu(cation)<1 leads to an acidic pH transient, mu(anion)/mu(cation) = 1 eliminates the pH transient and mu(anion)/mu(cation)>1 leads to a basic pH transient. When mu(anion)/mu(cation) = 1, |pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)|<1 leads to a basic pH transient, |pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)| = 1 eliminates the pH transient and |pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)|>1 leads to an acidic pH transient. By selecting appropriate anodic and cathodic buffering membranes to adjust the |pH(memb) (anodic) - 7|/|7 - pH(memb) (cathodic)| value, pH transients caused by dissimilar anion and cation mobilities can be avoided.


Assuntos
Focalização Isoelétrica , Sais/isolamento & purificação , Animais , Soluções Tampão , Células Cultivadas , Cães , Concentração de Íons de Hidrogênio , Íons/química , Membranas/química , Proteínas Recombinantes/química , Tireotropina/química
12.
J Chromatogr A ; 1130(2): 232-7, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16626722

RESUMO

Success in isoelectric trapping separations critically depends on the knowledge of the accurate operational pH value of the buffering membranes used. Currently, due to a lack of easy, rapid, accurate methods that can be used for the post-synthesis determination of the operational pH value of a buffering membrane, only nominal pH values calculated from the amounts of the reagents used in the synthesis of the membranes and their acid-base dissociation constants are available. To rectify this problem, UV-absorbing and fluorescent carrier ampholyte mixtures were prepared by alkylating pentaethylenehexamine with a chromophore and a fluorophore, followed by Michael addition of acrylic acid and itaconic acid to the resulting oligoamine. Carrier ampholyte mixtures, with evenly distributed absorbance values across the 3

Assuntos
Misturas Anfolíticas/síntese química , Focalização Isoelétrica/métodos , Membranas Artificiais , Acrilatos/química , Misturas Anfolíticas/química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Succinatos/química , Raios Ultravioleta
13.
Electrophoresis ; 25(20): 3323-30, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15490454

RESUMO

Hydrolytically stable, low-pI isoelectric membranes have been synthesized from low-pI ampholytic components, poly(vinyl alcohol), and a bifunctional cross-linker, glycerol-1,3-diglycidyl ether. The low-pI ampholytic components used contain one amino group and at least two weakly acidic functional groups. The acidic functional groups are selected such that the pI value of the ampholytic component is determined by the pK(a) values of the acidic functional groups. When the concentration of the ampholytic component incorporated into the membrane is higher than a required minimum value, the pI of the membrane becomes independent of variations in the actual incorporation rate of the ampholytic compound. The new, low-pI isoelectric membranes have been successfully used as anodic membranes in isoelectric trapping separations with pH < 1.5 anolytes and replaced the hydrolytically less stable polyacrylamide-based isoelectric membranes. The new low-pI isoelectric membranes have excellent mechanical stability, low electric resistance, good buffering capacity, and long life time, even when used with as much as 50 W power and current densities as high as 33 mA/cm(2) during the isoelectric trapping separations.


Assuntos
Focalização Isoelétrica/métodos , Membranas Artificiais , Soluções Tampão , Compostos de Epóxi/química , Éteres de Glicerila/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Concentração de Íons de Hidrogênio , Iminoácidos/química , Ponto Isoelétrico , Álcool de Polivinil/química
14.
Electrophoresis ; 25(14): 2128-38, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15273996

RESUMO

Alkali-stable, high-pI isoelectric membranes have been synthesized from quaternary ammonium derivatives of cyclodextrins and poly(vinyl alcohol), and bifunctional cross-linkers, such as glycerol-1,3-diglycidyl ether. The new, high-pI isoelectric membranes were successfully applied as cathodic membranes in isoelectric trapping separations in place of the hydrolytically more labile, polyacrylamide-based cathodic isoelectric membranes, and permitted the use of catholytes as alkaline as 1 M NaOH. The new high-pI isoelectric membranes have shown excellent mechanical stability, low electric resistance and long life times, even when subjected to electrophoresis with current densities as high as 80 mA/cm2.


Assuntos
Reagentes de Ligações Cruzadas/química , Ciclodextrinas/química , Eletroforese/instrumentação , Membranas/química , Álcool de Polivinil/química
15.
J Chromatogr A ; 1036(1): 3-6, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15139407

RESUMO

The typically low aqueous solubilities of small, hydrophobic organic ampholytic molecules limit the production rates that can be achieved in their isoelectric trapping (IET) separations and call for the use of hydro-organic mixtures as solvents. The compatibility of methanol-water mixtures and poly(ethylene terephthalate) substrate-supported isoelectric polyacrylamide hydrogels, developed for binary IET separations in a Gradiflow BF200IET unit, was investigated. The isoelectric polyacrylamide-based hydrogels retained their functional and mechanical integrities when the methanol concentration in the hydro-organic solvent mixture was kept at or below 25% (v/v). The utility of the hydro-organic media was demonstrated in the purification of a hydrophobic ampholytic compound, technical grade 4-hydroxy-3-(morpholinomethyl) benzoic acid. Production rates as high as 7 mg/h were achieved using small, 15 cm2 active surface area isoelectric membranes.


Assuntos
Focalização Isoelétrica/métodos , Metanol/química , Água/química
16.
Electrophoresis ; 25(2): 381-7, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14743491

RESUMO

In order to improve the production rates and lower the specific electrophoretic energy consumption values in preparative-scale, recirculating, binary isoelectric trapping separations, we propose to add an auxiliary isoelectric agent to the solution in the anodic separation compartment and another to the solution in the cathodic separation compartment to implement pH-biased isoelectric trapping. The auxiliary isoelectric agents are selected such that they are trapped in the respective anodic and cathodic separation compartments and also, have isoelectric point (pI) values that are different from the pI values of the analytes of interest. By proper selection of the auxiliary isoelectric agents and their concentrations, the analytes of interest can be kept in nonisoelectric, charged state during the entire course of the preparative-scale, recirculating, binary isoelectric trapping separation. This results in higher electrophoretic mobilities and solubilities for the analytes than in their isoelectric or near-isoelectric states, and leads to faster binary isoelectric trapping separations.


Assuntos
Focalização Isoelétrica/métodos , Proteínas/isolamento & purificação , Animais , Galinhas , Proteínas do Ovo/isolamento & purificação , Clara de Ovo/análise , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Focalização Isoelétrica/normas
17.
J Chromatogr A ; 989(1): 73-8, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12641284

RESUMO

The new Gradiflow BF200 IET unit, developed for isoelectric trapping protein separations has been modified and used to carry out preparative-scale enantiomer separations. Hydroxypropyl beta-cyclodextrin was used as the chiral resolving agent to induce an isoelectric point difference between the enantiomers. Three isoelectric membranes with isoelectric points below, in between and above the isoelectric points of the complexed enantiomers were used to trap the separated enantiomers in the anodic and cathodic separation compartments of the Gradiflow BF200 IET apparatus, respectively. The production rates were about 15 times higher than those previously obtained with another isoelectric trapping device and about 30% higher than those obtained in a continuous free-flow electrophoretic device operated in the isoelectric focusing mode. The remarkable separation speed observed in the modified Gradiflow BF200 IET unit is attributed to the favorable interplay of the short electrophoretic transfer distance, the high electric field strength and the large effective surface areas of the isoelectric membranes.


Assuntos
Focalização Isoelétrica/instrumentação , Estereoisomerismo
18.
J Chromatogr A ; 979(1-2): 155-61, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12498244

RESUMO

The Gradiflow BF200 preparative electrophoretic unit (Gradipore), which has been developed for size-based and charge-sign-based protein separations and in which the hydraulic flow path of the recirculating sample stream in the separation cartridge is orthogonal to the electric field, has been modified to carry out binary protein separations using the principles of isoelectric trapping. The disposable separation cartridge contained three isoelectric membranes which, along with the cartridge holder, formed the anode and cathode compartments and the anodic and cathodic separation compartments. The utility of the modified instrument was demonstrated by effecting a binary separation of chicken egg white across an isoelectric point 5.5 isoelectric membrane. The desalting and subsequent binary separation steps proved to be remarkably rapid, due to the favorable combination of short electrophoretic path, high electric field strength and large effective isoelectric membrane surface area.


Assuntos
Focalização Isoelétrica/métodos , Focalização Isoelétrica/instrumentação , Proteínas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA