Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 18(35): 6618-6628, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000279

RESUMO

The ubiquitous nature of microorganisms, especially of biofilm-forming bacteria, makes biofouling a prevalent challenge in many settings, including medical and industrial environments immersed in liquid and subjected to shear forces. Recent studies have shown that zwitterionic groups are effective in suppressing bacteria and protein adhesion as well as biofilm growth. However, the effect of zwitterionic groups on the removal of surface-bound bacteria has not been extensively studied. Here we present a microfluidic approach to evaluate the effectiveness in facilitating bacteria detachment by shear of an antifouling surface treatment using (3-(dimethyl;(3-trimethoxysilyl)propyl)ammonia propane-1-sulfonate), a sulfobetaine silane (SBS). Control studies show that SBS-functionalized surfaces greatly increase protein (bovine serum albumin) removal upon rinsing. On the same surfaces, enhanced bacteria (Pseudomonas aeruginosa) removal is observed under shear. To quantify this enhancement a microfluidic shear device is employed to investigate how SBS-functionalized surfaces promote bacteria detachment under shear. By using a microfluidic channel with five shear zones, we compare the removal of bacteria from zwitterionic and glass surfaces under different shear rates. At times of 15 min, 30 min, and 60 min, bacteria adhesion on SBS-functionalized surfaces is reduced relative to the control surface (glass) under quiescent conditions. However, surface-associated bacteria on the SBS-functionalized glass and control show similar percentages of live cells, suggesting minimal intrinsic biocidal effect from the SBS-functionalized surface. Notably, when exposed to shear rates ranging from 104 to 105 s-1, significantly fewer bacteria remain on the SBS-functionalized surfaces. These results demonstrate the potential of zwitterionic sulfobetaine as effective antifouling coatings that facilitate the removal of bacteria under shear.


Assuntos
Aderência Bacteriana , Incrustação Biológica , Bactérias , Betaína/análogos & derivados , Betaína/química , Betaína/farmacologia , Incrustação Biológica/prevenção & controle , Propriedades de Superfície
2.
ACS Appl Mater Interfaces ; 14(30): 34342-34353, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35857760

RESUMO

Bacteria are keenly sensitive to properties of the surfaces they contact, regulating their ability to form biofilms and initiate infections. This study examines how the presence of flagella, interactions between the cell body and the surface, or motility itself guides the dynamic contact between bacterial cells and a surface in flow, potentially enabling cells to sense physicochemical and mechanical properties of surfaces. This work focuses on a poly(ethylene glycol) biomaterial coating, which does not retain cells. In a comparison of four Escherichia coli strains with different flagellar expressions and motilities, cells with substantial run-and-tumble swimming motility exhibited increased flux to the interface (3 times the calculated transport-limited rate which adequately described the non-motile cells), greater proportions of cells engaging in dynamic nanometer-scale surface associations, extended times of contact with the surface, increased probability of return to the surface after escape and, as evidenced by slow velocities during near-surface travel, closer cellular approach. All these metrics, reported here as distributions of cell populations, point to a greater ability of motile cells, compared with nonmotile cells, to interact more closely, forcefully, and for greater periods of time with interfaces in flow. With contact durations of individual cells exceeding 10 s in the window of observation and trends suggesting further interactions beyond the field of view, the dynamic contact of individual cells may approach the minute timescales reported for mechanosensing and other cell recognition pathways. Thus, despite cell translation and the dynamic nature of contact, flow past a surface, even one rendered non-cell arresting by use of an engineered coating, may produce a subpopulation of cells already upregulating virulence factors before they arrest on a downstream surface and formally initiate biofilm formation.


Assuntos
Escherichia coli , Polietilenoglicóis , Bactérias , Biofilmes , Escherichia coli/fisiologia , Flagelos/metabolismo , Polietilenoglicóis/metabolismo
3.
ACS Appl Mater Interfaces ; 13(15): 17196-17206, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33821607

RESUMO

Bacterial swimming in flow near surfaces is critical to the spread of infection and device colonization. Understanding how material properties affect flagella- and motility-dependent bacteria-surface interactions is a first step in designing new medical devices that mitigate the risk of infection. We report that, on biomaterial coatings such as polyethylene glycol (PEG) hydrogels and end-tethered layers that prevent adhesive bacteria accumulation, the coating mechanics and hydration control the near-surface travel and dynamic surface contact of E. coli cells in gentle shear flow (order 10 s-1). Along relatively stiff (order 1 MPa) PEG hydrogels or end-tethered layers of PEG chains of similar polymer correlation length, run-and-tumble E. coli travel nanometrically close to the coating's surface in the flow direction in distinguishable runs or "engagements" that persist for several seconds, after which cells leave the interface. The duration of these engagements was greater along stiff hydrogels and end-tethered layers compared with softer, more-hydrated hydrogels. Swimming cells that left stiff hydrogels or end-tethered layers proceeded out to distances of a few microns and then returned to engage the surface again and again, while cells engaging the soft hydrogel tended not to return after leaving. As a result of differences in the duration of engagements and tendency to return to stiff hydrogel and end-tethered layers, swimming E. coli experienced 3 times the integrated dynamic surface contact with stiff coatings compared with softer hydrogels. The striking similarity of swimming behaviors near 16-nm-thick end-tethered layers and 100-µm-thick stiff hydrogels argues that only the outermost several nanometers of a highly hydrated coating influence cell travel. The range of material stiffnesses, cell-surface distance during travel, and time scales of travel compared with run-and-tumble time scales suggests the influence of the coating derives from its interactions with flagella and its potential to alter flagellar bundling. Given that restriction of flagellar rotation is known to trigger increased virulence, bacteria influenced by surfaces in one region may become predisposed to form a biofilm downstream.


Assuntos
Escherichia coli/fisiologia , Movimento/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Hidrogéis/química , Natação
4.
Langmuir ; 35(40): 13070-13077, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31550166

RESUMO

We compare the electrostatically driven capture of flowing rod-shaped and spherical silica particles from dilute solutions onto a flow chamber wall that carries the opposite electrostatic charge from the particles. Particle accumulation and orientation are measured in time at a fixed region on the wall of a shear flow chamber. Rod-shaped particle aspect ratios are 2.5-3.2 and particle lengths are 1.3 and 2.67 µm for two samples, while sphere diameters were 0.72, 0.96, and 2.0 µm for three samples. At a moderate wall shear rate of 22 s-1, the particle accumulation for both rods and spheres is well described by diffusion-limited kinetics, demonstrating the limiting effect of particle diffusion in the near-wall boundary layer for electrostatically driven capture in this particle shape and size range. The significance of this finding is demonstrated in a calculation that shows that for delivery applications, nearly the same (within 10%) particle volume or mass is delivered to a surface at the diffusion-limited rate by rods and spheres. Therefore, in the absence of other motivating factors, the expense of developing rod-shaped microscale delivery packages to enhance capture from flow in the diffusion-limited simple shear regime is unwarranted. It is also interesting that the captured orientations of the larger rods, 2.6 µm in average length, were highly varied and insensitive to flow: a substantial fraction of rods were trapped in standing and slightly leaning orientations, touching the surface by their ends. Additionally, for particles that were substantially tipped over, there was only modest orientation in the flow direction. Taken together, these findings suggest that on the time scale of near-surface particle rotations, adhesion events are fast, trapping particles in orientations that do not necessarily maximize their favored adhesive contact or reduce hydrodynamic drag.

5.
ACS Appl Mater Interfaces ; 10(34): 29058-29068, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30109808

RESUMO

Important processes in nature and technology involve the adhesive capture of flowing particles or cells on the walls of a conduit. This paper introduces engineered spherical microparticles whose capture rates are limited by their near surface motions in flow. Specifically, these microparticles are sparsely functionalized with nanoscopic regions ("patches") of adhesive functionality, without which they would be nonadhesive. Not only is particle capture on the wall of a shear-chamber limited by surface chemistry as opposed to transport, but also the capture rates depend specifically on particle rotations that result from the vorticity of the shear flow field. These particle rotations continually expose new particle surface to the opposing chamber wall, sampling the particle surface for an adhesive region and controlling the capture rate. Control studies with the same patchy functionality on the chamber wall rather than the particles reveal a related signature of particle capture but substantially faster (still surface limited) particle capture rates. Thus, when the same functionality is placed on the wall rather than the particles, the capture is faster because it depends on the particle translation past a functionalized wall rather than on the particle rotations. The dependence of particle capture on functionalization of the particles versus the wall is consistent with the faster near-wall particle translation in shearing flow compared with the velocity of the rotating particle surface near the wall. These findings, in addition to providing a new class of nanoscopically patchy engineered particles, provide insight into the capture and detection of cells presenting sparse distinguishing surface features and the design of delivery packages for highly targeted pharmaceutical delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA