Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 128(5): 2025-2041, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29664021

RESUMO

Cerebral white matter injury (WMI) persistently disrupts myelin regeneration by oligodendrocyte progenitor cells (OPCs). We identified a specific bioactive hyaluronan fragment (bHAf) that downregulates myelin gene expression and chronically blocks OPC maturation and myelination via a tolerance-like mechanism that dysregulates pro-myelination signaling via AKT. Desensitization of AKT occurs via TLR4 but not TLR2 or CD44. OPC differentiation was selectively blocked by bHAf in a maturation-dependent fashion at the late OPC (preOL) stage by a noncanonical TLR4/TRIF pathway that induced persistent activation of the FoxO3 transcription factor downstream of AKT. Activated FoxO3 selectively localized to oligodendrocyte lineage cells in white matter lesions from human preterm neonates and adults with multiple sclerosis. FoxO3 constraint of OPC maturation was bHAf dependent, and involved interactions at the FoxO3 and MBP promoters with the chromatin remodeling factor Brg1 and the transcription factor Olig2, which regulate OPC differentiation. WMI has adapted an immune tolerance-like mechanism whereby persistent engagement of TLR4 by bHAf promotes an OPC niche at the expense of myelination by engaging a FoxO3 signaling pathway that chronically constrains OPC differentiation.


Assuntos
Proteína Forkhead Box O3/imunologia , Tolerância Imunológica , Células Precursoras de Oligodendrócitos/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais/imunologia , Receptores Toll-Like/imunologia , Animais , DNA Helicases/genética , DNA Helicases/imunologia , Feminino , Proteína Forkhead Box O3/genética , Humanos , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Neuregulina-1/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Células Precursoras de Oligodendrócitos/patologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética , Receptores Toll-Like/genética , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
2.
J Neurosci ; 37(49): 11912-11929, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29089437

RESUMO

Preterm infants are at risk for a broad spectrum of neurobehavioral disabilities associated with diffuse disturbances in cortical growth and development. During brain development, subplate neurons (SPNs) are a largely transient population that serves a critical role to establish functional cortical circuits. By dynamically integrating into developing cortical circuits, they assist in consolidation of intracortical and extracortical circuits. Although SPNs reside in close proximity to cerebral white matter, which is particularly vulnerable to oxidative stress, the susceptibility of SPNs remains controversial. We determined SPN responses to two common insults to the preterm brain: hypoxia-ischemia and hypoxia. We used a preterm fetal sheep model using both sexes that reproduces the spectrum of human cerebral injury and abnormal cortical growth. Unlike oligodendrocyte progenitors, SPNs displayed pronounced resistance to early or delayed cell death from hypoxia or hypoxia-ischemia. We thus explored an alternative hypothesis that these insults alter the maturational trajectory of SPNs. We used DiOlistic labeling to visualize the dendrites of SPNs selectively labeled for complexin-3. SPNs displayed reduced basal dendritic arbor complexity that was accompanied by chronic disturbances in SPN excitability and synaptic activity. SPN dysmaturation was significantly associated with the level of fetal hypoxemia and metabolic stress. Hence, despite the resistance of SPNs to insults that trigger white matter injury, transient hypoxemia disrupted SPN arborization and functional maturation during a critical window in cortical development. Strategies directed at limiting the duration or severity of hypoxemia during brain development may mitigate disturbances in cerebral growth and maturation related to SPN dysmaturation.SIGNIFICANCE STATEMENT The human preterm brain commonly sustains blood flow and oxygenation disturbances that impair cerebral cortex growth and cause life-long cognitive and learning disabilities. We investigated the fate of subplate neurons (SPNs), which are a master regulator of brain development that plays critical roles in establishing cortical connections to other brain regions. We used a preterm fetal sheep model that reproduces key features of brain injury in human preterm survivors. We analyzed the responses of fetal SPNs to transient disturbances in fetal oxygenation. We discovered that SPNs are surprisingly resistant to cell death from low oxygen states but acquire chronic structural and functional changes that suggest new strategies to prevent learning problems in children and adults that survive preterm birth.


Assuntos
Hipóxia/patologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Dendritos/fisiologia , Feminino , Hipóxia/complicações , Masculino , Degeneração Neural/etiologia , Degeneração Neural/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ovinos , Fatores de Tempo
3.
PLoS One ; 9(11): e112800, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25390897

RESUMO

OBJECTIVE: Although the spectrum of white matter injury (WMI) in preterm infants is shifting from cystic necrotic lesions to milder forms, the factors that contribute to this changing spectrum are unclear. We hypothesized that recurrent hypoxia-ischemia (rHI) will exacerbate the spectrum of WMI defined by markers of inflammation and molecules related to the extracellular matrix (hyaluronan (HA) and the PH20 hyaluronidase) that regulate maturation of the oligodendrocyte (OL) lineage after WMI. METHODS: We employed a preterm fetal sheep model of in utero moderate hypoxemia and global severe but not complete cerebral ischemia that reproduces the spectrum of human WMI. The response to rHI was compared against corresponding early or later single episodes of HI. An ordinal rating scale of WMI was compared against an unbiased quantitative image analysis protocol that provided continuous histo-pathological outcome measures for astrogliosis and microglial activation. Late oligodendrocyte progenitors (preOLs) were quantified by stereology. Analysis of hyaluronan and the hyaluronidase PH20 defined the progressive response of the extracellular matrix to WMI. RESULTS: rHI resulted in a more severe spectrum of WMI with a greater burden of necrosis, but an expanded population of preOLs that displayed reduced susceptibility to cell death. WMI from single episodes of HI or rHI was accompanied by elevated HA levels and increased labeling for PH20. Expression of PH20 in fetal ovine WMI was confirmed by RT-PCR and RNA-sequencing. CONCLUSIONS: rHI is associated with an increased risk for more severe WMI with necrosis, but reduced risk for preOL degeneration compared to single episodes of HI. Expansion of the preOL pool may be linked to elevated hyaluronan and PH20.


Assuntos
Hipóxia-Isquemia Encefálica/patologia , Substância Branca/lesões , Substância Branca/patologia , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Feto/metabolismo , Feto/patologia , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Necrose/metabolismo , Necrose/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Ovinos
4.
J Vis Exp ; (89)2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-25046659

RESUMO

Detection of fluorescence provides the foundation for many widely utilized and rapidly advancing microscopy techniques employed in modern biological and medical applications. Strengths of fluorescence include its sensitivity, specificity, and compatibility with live imaging. Unfortunately, conventional forms of fluorescence microscopy suffer from one major weakness, diffraction-limited resolution in the imaging plane, which hampers studies of structures with dimensions smaller than ~250 nm. Recently, this limitation has been overcome with the introduction of super-resolution fluorescence microscopy techniques, such as photoactivated localization microscopy (PALM). Unlike its conventional counterparts, PALM can produce images with a lateral resolution of tens of nanometers. It is thus now possible to use fluorescence, with its myriad strengths, to elucidate a spectrum of previously inaccessible attributes of cellular structure and organization. Unfortunately, PALM is not trivial to implement, and successful strategies often must be tailored to the type of system under study. In this article, we show how to implement single-color PALM studies of vesicular structures in fixed, cultured neurons. PALM is ideally suited to the study of vesicles, which have dimensions that typically range from ~50-250 nm. Key steps in our approach include labeling neurons with photoconvertible (green to red) chimeras of vesicle cargo, collecting sparsely sampled raw images with a super-resolution microscopy system, and processing the raw images to produce a high-resolution PALM image. We also demonstrate the efficacy of our approach by presenting exceptionally well-resolved images of dense-core vesicles (DCVs) in cultured hippocampal neurons, which refute the hypothesis that extrasynaptic trafficking of DCVs is mediated largely by DCV clusters.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Neurônios/ultraestrutura , Vesículas Secretórias/ultraestrutura , Animais , Humanos
5.
Ann Neurol ; 75(4): 508-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24395459

RESUMO

OBJECTIVE: Recently, we reported that the neocortex displays impaired growth after transient cerebral hypoxia-ischemia (HI) at preterm gestation that is unrelated to neuronal death but is associated with decreased dendritic arbor complexity of cortical projection neurons. We hypothesized that these morphological changes constituted part of a more widespread neuronal dysmaturation response to HI in the caudate nucleus (CN), which contributes to motor and cognitive disability in preterm survivors. METHODS: Ex vivo magnetic resonance imaging (MRI), immunohistochemistry, and Golgi staining defined CN growth, cell death, proliferation, and dendritic maturation in preterm fetal sheep 4 weeks after HI. Patch-clamp recording was used to analyze glutamatergic synaptic currents in CN neurons. RESULTS: MRI-defined growth of the CN was reduced after ischemia compared to controls. However, no significant acute or delayed neuronal death was seen in the CN or white matter. Nor was there significant loss of calbindin-positive medium spiny projection neurons (MSNs) or CN interneurons expressing somatostatin, calretinin, parvalbumin, or tyrosine hydroxylase. Morphologically, ischemic MSNs showed a markedly immature dendritic arbor, with fewer dendritic branches, nodes, endings, and spines. The magnitude and kinetics of synaptic currents, and the relative contribution of glutamate receptor subtypes in the CN were significantly altered. INTERPRETATION: The marked MSN dendritic and functional abnormalities after preterm cerebral HI, despite the marked resistance of immature CN neurons to cell death, are consistent with widespread susceptibility of projection neurons to HI-induced dysmaturation. These global disturbances in dendritic maturation and glutamatergic synaptic transmission suggest a new mechanism for long-term motor and behavioral disabilities in preterm survivors via widespread disruption of neuronal connectivity.


Assuntos
Isquemia Encefálica/patologia , Núcleo Caudado/patologia , Hipóxia Fetal/patologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/patologia , Nascimento Prematuro/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Isquemia Encefálica/sangue , Caspase 3/metabolismo , Dendritos/patologia , Dendritos/ultraestrutura , Modelos Animais de Doenças , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , GABAérgicos/farmacologia , Cabras , Antígeno Ki-67/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Gravidez , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA