Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38187708

RESUMO

The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to eliminate cancer by expanding and/or sustaining T cells with anti-tumor capabilities. However, whether cancer vaccines and ICT enhance anti-tumor immunity by distinct or overlapping mechanisms remains unclear. Here, we compared effective therapeutic tumor-specific mutant neoantigen (NeoAg) cancer vaccines with anti-CTLA-4 and/or anti-PD-1 ICT in preclinical models. Both NeoAg vaccines and ICT induce expansion of intratumoral NeoAg-specific CD8 T cells, though the degree of expansion and acquisition of effector activity was much more substantial following NeoAg vaccination. Further, we found that NeoAg vaccines are particularly adept at inducing proliferating and stem-like NeoAg-specific CD8 T cells. Single cell T cell receptor (TCR) sequencing revealed that TCR clonotype expansion and diversity of NeoAg-specific CD8 T cells relates to their phenotype and functional state associated with specific immunotherapies employed. Effective NeoAg vaccines and ICT required both CD8 and CD4 T cells. While NeoAg vaccines and anti-PD-1 affected the CD4 T cell compartment, it was to less of an extent than observed with anti-CTLA-4, which notably induced ICOS+Bhlhe40+ Th1-like CD4 T cells and, when combined with anti-PD-1, a small subset of Th2-like CD4 T cells. Although effective NeoAg vaccines or ICT expanded intratumoral M1-like iNOS+ macrophages, NeoAg vaccines expanded rather than suppressed (as observed with ICT) M2-like CX3CR1+CD206+ macrophages, associated with the vaccine adjuvant. Further, combining NeoAg vaccination with ICT induced superior efficacy compared to either therapy in isolation, highlighting the utility of combining these modalities to eliminate cancer.

3.
Cancer Immunol Res ; 10(5): 597-611, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35181783

RESUMO

Immune checkpoint therapy (ICT) using antibody blockade of programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can provoke T cell-dependent antitumor activity that generates durable clinical responses in some patients. The epigenetic and transcriptional features that T cells require for efficacious ICT remain to be fully elucidated. Herein, we report that anti-PD-1 and anti-CTLA-4 ICT induce upregulation of the transcription factor BHLHE40 in tumor antigen-specific CD8+ and CD4+ T cells and that T cells require BHLHE40 for effective ICT in mice bearing immune-edited tumors. Single-cell RNA sequencing of intratumoral immune cells in BHLHE40-deficient mice revealed differential ICT-induced immune cell remodeling. The BHLHE40-dependent gene expression changes indicated dysregulated metabolism, NF-κB signaling, and IFNγ response within certain subpopulations of CD4+ and CD8+ T cells. Intratumoral CD4+ and CD8+ T cells from BHLHE40-deficient mice exhibited higher expression of the inhibitory receptor gene Tigit and displayed alterations in expression of genes encoding chemokines/chemokine receptors and granzyme family members. Mice lacking BHLHE40 had reduced ICT-driven IFNγ production by CD4+ and CD8+ T cells and defects in ICT-induced remodeling of macrophages from a CX3CR1+CD206+ subpopulation to an iNOS+ subpopulation that is typically observed during effective ICT. Although both anti-PD-1 and anti-CTLA-4 ICT in BHLHE40-deficient mice led to the same outcome-tumor outgrowth-several BHLHE40-dependent alterations were specific to the ICT that was used. Our results reveal a crucial role for BHLHE40 in effective ICT and suggest that BHLHE40 may be a predictive or prognostic biomarker for ICT efficacy and a potential therapeutic target.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Granzimas , Proteínas de Homeodomínio , Humanos , Interferon gama , Camundongos , Neoplasias/tratamento farmacológico
4.
iScience ; 24(10): 103108, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34622161

RESUMO

The release of excess glutamate following traumatic brain injury (TBI) results in glutamate excitotoxicity and metabolic energy failure. Endogenous mechanisms for reducing glutamate concentration in the brain parenchyma following TBI are poorly understood. Using multiple mass spectrometry approaches, we examined TBI-induced changes to glutamate metabolism. We present evidence that glutamate concentration can be reduced by glutamate oxidation via a "truncated" tricarboxylic acid cycle coupled to the urea cycle. This process reduces glutamate levels, generates carbon for energy metabolism, leads to citrulline accumulation, and produces nitric oxide. Several key metabolites are identified by metabolomics in support of this mechanism and the locations of these metabolites in the injured hemisphere are demonstrated by MALDI-MS imaging. The results of this study establish the advantages of multiple mass spectrometry approaches and provide insights into glutamate metabolism following TBI that could lead to improved treatment approaches.

5.
Proteomes ; 7(1)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678040

RESUMO

Fibroblast growth factor 14 (FGF14) is a member of the intracellular FGFs, which is a group of proteins involved in neuronal ion channel regulation and synaptic transmission. We previously demonstrated that male Fgf14 -/- mice recapitulate the salient endophenotypes of synaptic dysfunction and behaviors that are associated with schizophrenia (SZ). As the underlying etiology of SZ and its sex-specific onset remain elusive, the Fgf14 -/- model may provide a valuable tool to interrogate pathways related to disease mechanisms. Here, we performed label-free quantitative proteomics to identify enriched pathways in both male and female hippocampi from Fgf14 +/+ and Fgf14 -/- mice. We discovered that all of the differentially expressed proteins measured in Fgf14 -/- animals, relative to their same-sex wildtype counterparts, are associated with SZ based on genome-wide association data. In addition, measured changes in the proteome were predominantly sex-specific, with the male Fgf14 -/- mice distinctly enriched for pathways associated with neuropsychiatric disorders. In the male Fgf14-/- mouse, we found molecular characteristics that, in part, may explain a previously described neurotransmission and behavioral phenotype. This includes decreased levels of ALDH1A1 and protein kinase A (PRKAR2B). ALDH1A1 has been shown to mediate an alternative pathway for gamma-aminobutyric acid (GABA) synthesis, while PRKAR2B is essential for dopamine 2 receptor signaling, which is the basis of current antipsychotics. Collectively, our results provide new insights in the role of FGF14 and support the use of the Fgf14 -/- mouse as a useful preclinical model of SZ for generating hypotheses on disease mechanisms, sex-specific manifestation, and therapy.

6.
Clin Transl Med ; 5(1): 10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26965929

RESUMO

BACKGROUND: Tamoxifen is used in endocrine treatment of breast cancer to inhibit estrogen signaling. A set of stratified ER-positive and ER-negative tumor sections was subjected to manual deposition of tamoxifen solution in order to investigate its spatial distribution upon exposure to interaction within thin tissue sections. METHODS: The localization of tamoxifen in tumor sections was assessed by matrix assisted laser deposition/ionization mass spectrometry imaging. The images of extracted ion maps were analyzed for comparison of signal intensity distributions. RESULTS: The precursor ion of tamoxifen (m/z 372.233) displayed heterogeneous signal intensity distributions in histological compartments of tumor tissue sections. The levels of tamoxifen in tumor cells compared with stroma were higher in ER-positive tissues, whereas ER-negative tissue sections showed lower signal intensities in tumor cells. CONCLUSIONS: The experimental model was successfully applied on frozen tumor samples allowing for differentiation between ER groups based on distribution of tamoxifen.

7.
FASEB J ; 30(6): 2171-86, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26917740

RESUMO

Recent data shows that fibroblast growth factor 14 (FGF14) binds to and controls the function of the voltage-gated sodium (Nav) channel with phenotypic outcomes on neuronal excitability. Mutations in the FGF14 gene in humans have been associated with brain disorders that are partially recapitulated in Fgf14(-/-) mice. Thus, signaling pathways that modulate the FGF14:Nav channel interaction may be important therapeutic targets. Bioluminescence-based screening of small molecule modulators of the FGF14:Nav1.6 complex identified 4,5,6,7 -: tetrabromobenzotriazole (TBB), a potent casein kinase 2 (CK2) inhibitor, as a strong suppressor of FGF14:Nav1.6 interaction. Inhibition of CK2 through TBB reduces the interaction of FGF14 with Nav1.6 and Nav1.2 channels. Mass spectrometry confirmed direct phosphorylation of FGF14 by CK2 at S228 and S230, and mutation to alanine at these sites modified FGF14 modulation of Nav1.6-mediated currents. In 1 d in vitro hippocampal neurons, TBB induced a reduction in FGF14 expression, a decrease in transient Na(+) current amplitude, and a hyperpolarizing shift in the voltage dependence of Nav channel steady-state inactivation. In mature neurons, TBB reduces the axodendritic polarity of FGF14. In cornu ammonis area 1 hippocampal slices from wild-type mice, TBB impairs neuronal excitability by increasing action potential threshold and lowering firing frequency. Importantly, these changes in excitability are recapitulated in Fgf14(-/-) mice, and deletion of Fgf14 occludes TBB-dependent phenotypes observed in wild-type mice. These results suggest that a CK2-FGF14 axis may regulate Nav channels and neuronal excitability.-Hsu, W.-C. J., Scala, F., Nenov, M. N., Wildburger, N. C., Elferink, H., Singh, A. K., Chesson, C. B., Buzhdygan, T., Sohail, M., Shavkunov, A. S., Panova, N. I., Nilsson, C. L., Rudra, J. S., Lichti, C. F., Laezza, F. CK2 activity is required for the interaction of FGF14 with voltage-gated sodium channels and neuronal excitability.


Assuntos
Caseína Quinase II/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Neurônios/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Caseína Quinase II/genética , Feminino , Fatores de Crescimento de Fibroblastos/genética , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp
8.
Methods Mol Biol ; 1278: 497-514, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859972

RESUMO

The understanding of ion channel function continues to be a significant driver in molecular pharmacology. In this field of study, protein-protein interactions are emerging as fundamental molecular determinants of ion channel function and as such are becoming an attractive source of highly specific targets for drug development. The investigation of ion channel macromolecular complexes, however, still relies on conventional methods that are usually technically challenging and time-consuming, significantly hampering our ability to identify, characterize and modify ion channel function through targeted molecular approaches. As a response to the urgent need of developing rapid and albeit accurate technologies to survey ion channel molecular complexes, we describe a new application of the split-luciferase complementation assay to study the interaction of the voltage-gated Na + channel with the intracellular fibroblast growth factor 14 and its dynamic regulation in live cells. We envision that the flexibility and accessibility of this assay will have a broad impact in the ion channel field complementing structural and functional studies, enabling the interrogation of protein-channel dynamic interactions in complex cellular contexts and laying the basis for new frameworks in drug discovery campaigns.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas/metabolismo , Fatores de Crescimento de Fibroblastos/química , Humanos , Proteínas Luminescentes/química , Microscopia de Fluorescência , Canal de Sódio Disparado por Voltagem NAV1.5/química , Proteínas/química
9.
Mol Cell Proteomics ; 14(5): 1288-300, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724910

RESUMO

Voltage-gated sodium channels (Nav1.1-Nav1.9) are responsible for the initiation and propagation of action potentials in neurons, controlling firing patterns, synaptic transmission and plasticity of the brain circuit. Yet, it is the protein-protein interactions of the macromolecular complex that exert diverse modulatory actions on the channel, dictating its ultimate functional outcome. Despite the fundamental role of Nav channels in the brain, information on its proteome is still lacking. Here we used affinity purification from crude membrane extracts of whole brain followed by quantitative high-resolution mass spectrometry to resolve the identity of Nav1.2 protein interactors. Of the identified putative protein interactors, fibroblast growth factor 12 (FGF12), a member of the nonsecreted intracellular FGF family, exhibited 30-fold enrichment in Nav1.2 purifications compared with other identified proteins. Using confocal microscopy, we visualized native FGF12 in the brain tissue and confirmed that FGF12 forms a complex with Nav1.2 channels at the axonal initial segment, the subcellular specialized domain of neurons required for action potential initiation. Co-immunoprecipitation studies in a heterologous expression system validate Nav1.2 and FGF12 as interactors, whereas patch-clamp electrophysiology reveals that FGF12 acts synergistically with CaMKII, a known kinase regulator of Nav channels, to modulate Nav1.2-encoded currents. In the presence of CaMKII inhibitors we found that FGF12 produces a bidirectional shift in the voltage-dependence of activation (more depolarized) and the steady-state inactivation (more hyperpolarized) of Nav1.2, increasing the channel availability. Although providing the first characterization of the Nav1.2 CNS proteome, we identify FGF12 as a new functionally relevant interactor. Our studies will provide invaluable information to parse out the molecular determinant underlying neuronal excitability and plasticity, and extending the relevance of iFGFs signaling in the normal and diseased brain.


Assuntos
Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Neurônios/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Membrana Celular , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/farmacologia , Expressão Gênica , Células HEK293 , Humanos , Imunoprecipitação , Anotação de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.2/química , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Plasticidade Neuronal , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ligação Proteica , Proteoma/genética , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Proteome Res ; 13(1): 191-9, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24266786

RESUMO

One subproject within the global Chromosome 19 Consortium is to define chromosome 19 gene and protein expression in glioma-derived cancer stem cells (GSCs). Chromosome 19 is notoriously linked to glioma by 1p/19q codeletions, and clinical tests are established to detect that specific aberration. GSCs are tumor-initiating cells and are hypothesized to provide a repository of cells in tumors that can self-replicate and be refractory to radiation and chemotherapeutic agents developed for the treatment of tumors. In this pilot study, we performed RNA-Seq, label-free quantitative protein measurements in six GSC lines, and targeted transcriptomic analysis using a chromosome 19-specific microarray in an additional six GSC lines. The data have been deposited to the ProteomeXchange with identifier PXD000563. Here we present insights into differences in GSC gene and protein expression, including the identification of proteins listed as having no or low evidence at the protein level in the Human Protein Atlas, as correlated to chromosome 19 and GSC subtype. Furthermore, the upregulation of proteins downstream of adenovirus-associated viral integration site 1 (AAVS1) in GSC11 in response to oncolytic adenovirus treatment was demonstrated. Taken together, our results may indicate new roles for chromosome 19, beyond the 1p/19q codeletion, in the future of personalized medicine for glioma patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Cromossomos Humanos Par 19 , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteoma , Transcriptoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/genética , Glioma/patologia , Humanos , Células-Tronco Neoplásicas/patologia
11.
J Biol Chem ; 288(27): 19370-85, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23640885

RESUMO

The FGF14 protein controls biophysical properties and subcellular distribution of neuronal voltage-gated Na(+) (Nav) channels through direct binding to the channel C terminus. To gain insights into the dynamic regulation of this protein/protein interaction complex, we employed the split luciferase complementation assay to screen a small molecule library of kinase inhibitors against the FGF14·Nav1.6 channel complex and identified inhibitors of GSK3 as hits. Through a combination of a luminescence-based counter-screening, co-immunoprecipitation, patch clamp electrophysiology, and quantitative confocal immunofluorescence, we demonstrate that inhibition of GSK3 reduces the assembly of the FGF14·Nav channel complex, modifies FGF14-dependent regulation of Na(+) currents, and induces dissociation and subcellular redistribution of the native FGF14·Nav channel complex in hippocampal neurons. These results further emphasize the role of FGF14 as a critical component of the Nav channel macromolecular complex, providing evidence for a novel GSK3-dependent signaling pathway that might control excitability through specific protein/protein interactions.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/metabolismo , Complexos Multiproteicos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Neurônios/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Fatores de Crescimento de Fibroblastos/genética , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Células HEK293 , Hipocampo/citologia , Humanos , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/citologia , Ratos , Transdução de Sinais/efeitos dos fármacos
12.
Biochemistry ; 45(38): 11390-400, 2006 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16981699

RESUMO

G-proteins cycle between an inactive GDP-bound state and an active GTP-bound state, serving as molecular switches that coordinate cellular signaling. We recently used phage display to identify a series of peptides that bind G alpha subunits in a nucleotide-dependent manner [Johnston, C. A., Willard, F. S., Jezyk, M. R., Fredericks, Z., Bodor, E. T., Jones, M. B., Blaesius, R., Watts, V. J., Harden, T. K., Sondek, J., Ramer, J. K., and Siderovski, D. P. (2005) Structure 13, 1069-1080]. Here we describe the structural features and functions of KB-1753, a peptide that binds selectively to GDP x AlF4(-)- and GTPgammaS-bound states of G alpha(i) subunits. KB-1753 blocks interaction of G alpha(transducin) with its effector, cGMP phosphodiesterase, and inhibits transducin-mediated activation of cGMP degradation. Additionally, KB-1753 interferes with RGS protein binding and resultant GAP activity. A fluorescent KB-1753 variant was found to act as a sensor for activated G alpha in vitro. The crystal structure of KB-1753 bound to G alpha(i1) x GDP x AlF4(-) reveals binding to a conserved hydrophobic groove between switch II and alpha3 helices and, along with supporting biochemical data and previous structural analyses, supports the notion that this is the site of effector interactions for G alpha(i) subunits.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Compostos de Alumínio/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Dimerização , Fluoretos/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Guanosina Difosfato/química , Humanos , Proteínas Luminescentes/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas RGS/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
13.
Biochemistry ; 45(35): 10690-7, 2006 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16939221

RESUMO

The duration of the photoreceptor's response to a light stimulus determines the speed at which an animal adjusts to ever-changing conditions of the visual environment. One critical component which regulates the photoresponse duration on the molecular level is the complex between the ninth member of the regulators of G protein signaling family (RGS9-1) and its partner, type 5 G protein beta-subunit (Gbeta5L). RGS9-1.Gbeta5L is responsible for the activation of the GTPase activity of the photoreceptor-specific G protein, transducin. Importantly, this function of RGS9-1.Gbeta5L is regulated by its membrane anchor, R9AP, which drastically potentiates the ability of RGS9-1.Gbeta5L to activate transducin GTPase. In this study, we address the kinetic mechanism of R9AP action and find that it consists primarily of a direct increase in the RGS9-1.Gbeta5L activity. We further showed that the binding site for RGS9-1.Gbeta5L is located within the N-terminal putative trihelical domain of R9AP, and even though this domain is sufficient for binding, it takes the entire R9AP molecule to potentiate the activity of RGS9-1.Gbeta5L. The mechanism revealed in this study is different from and complements another well-established mechanism of regulation of RGS9-1.Gbeta5L by the effector enzyme, cGMP phosphodiesterase, which is based entirely on the enhancement in the affinity between RGS9-1.Gbeta5L and transducin. Together, these mechanisms ensure timely transducin inactivation in the course of the photoresponse, a requisite for normal vision.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas RGS/química , Segmento Externo da Célula Bastonete/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sítios de Ligação , Catálise , Bovinos , Ativação Enzimática , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/farmacocinética , Proteínas de Ligação ao GTP/química , Cinética , Proteínas de Membrana/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Sais/química , Transdução de Sinais , Soluções/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA