Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 20(12): e3001921, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548240

RESUMO

Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.


Assuntos
Conservação dos Recursos Naturais , Spheniscidae , Animais , Humanos , Regiões Antárticas , Biodiversidade , Espécies Introduzidas , Mudança Climática , Ecossistema
2.
Oecologia ; 193(3): 761-771, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32656605

RESUMO

Plant parasitic nematodes are among the greatest consumers of primary production in terrestrial ecosystems. Their feeding strategies can be divided into endoparasites and ectoparasites that differ substantially, not only in their damage potential to host tissue and primary production, but also in their susceptibility to environmental changes. Climate change is predicted to increase variability of precipitation in many systems, yet the effects on belowground biodiversity and associated impacts on primary productivity remain poorly understood. To examine the impact of altered precipitation on endo- and ectoparasitic soil nematodes, we conducted a 2-year precipitation manipulation study across an arid, a semiarid, and a mesic grassland. Plant parasite feeding type abundance, functional guilds, and herbivory index in response to precipitation were evaluated. Responses of endo- and ectoparasites to increased precipitation varied by grassland type. There was little response of ectoparasites to increased precipitation although their population declined at the mesic site with increased precipitation. The abundance of endoparasites remained unchanged with increasing precipitation at the arid site, increased at the semiarid, and decreased at the mesic site. The herbivory index followed closely the trends seen in the endoparasites response by stagnating at the arid site, increasing at the semiarid, and decreasing at the mesic site. Our findings suggest that altered precipitation has differing effects on plant parasite feeding strategies as well as functional guilds. This may have important implications for grassland productivity, as plant parasite pressure may exacerbate the effects of climate change on host plants.


Assuntos
Ecossistema , Nematoides , Animais , Biodiversidade , Mudança Climática , Pradaria , Herbivoria , Chuva , Solo
3.
Proc Natl Acad Sci U S A ; 116(26): 12883-12888, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31186355

RESUMO

Precipitation changes among years and locations along gradients of mean annual precipitation (MAP). The way those changes interact and affect populations of soil organisms from arid to moist environments remains unknown. Temporal and spatial changes in precipitation could lead to shifts in functional composition of soil communities that are involved in key aspects of ecosystem functioning such as ecosystem primary production and carbon cycling. We experimentally reduced and increased growing-season precipitation for 2 y in field plots at arid, semiarid, and mesic grasslands to investigate temporal and spatial precipitation controls on the abundance and community functional composition of soil nematodes, a hyper-abundant and functionally diverse metazoan in terrestrial ecosystems. We found that total nematode abundance decreased with greater growing-season precipitation following increases in the abundance of predaceous nematodes that consumed and limited the abundance of nematodes lower in the trophic structure, including root feeders. The magnitude of these nematode responses to temporal changes in precipitation increased along the spatial gradient of long-term MAP, and significant effects only occurred at the mesic site. Contrary to the temporal pattern, nematode abundance increased with greater long-term MAP along the spatial gradient from arid to mesic grasslands. The projected increase in the frequency of extreme dry years in mesic grasslands will therefore weaken predation pressure belowground and increase populations of root-feeding nematodes, potentially leading to higher levels of plant infestation and plant damage that would exacerbate the negative effect of drought on ecosystem primary production and C cycling.


Assuntos
Secas , Pradaria , Herbivoria , Nematoides/fisiologia , Comportamento Predatório , Solo/parasitologia , Animais , Inundações
4.
Ecol Lett ; 19(5): 554-63, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26947573

RESUMO

Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process.


Assuntos
Ecossistema , Modelos Biológicos , Folhas de Planta/metabolismo , Microbiologia do Solo , Solo/química , Animais , Carbono/metabolismo , Nematoides/metabolismo , Nitrogênio/metabolismo , Fatores de Tempo , Água/metabolismo
5.
Glob Chang Biol ; 21(4): 1590-600, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25363131

RESUMO

In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity.


Assuntos
Dióxido de Carbono/análise , Mudança Climática , Ecossistema , Nitrogênio/análise , Microbiologia do Solo , Aquecimento Global , Modelos Teóricos , Solo/química
6.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25274366

RESUMO

Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents.


Assuntos
Biodiversidade , Microbiologia do Solo , Solo , Dados de Sequência Molecular , Cidade de Nova Iorque , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Análise de Sequência de DNA , Solo/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA