Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Wellcome Open Res ; 7: 279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-39091415

RESUMO

Large-scale reference genome sequencing projects for all of biodiversity are underway and common standards have been in place for some years to enable the understanding and sharing of sequence data. However, the metadata that describes the collection, processing and management of samples, and link to the associated sequencing and genome data, are not yet adequately developed and standardised for these projects. At the time of writing, the Darwin Tree of Life (DToL) Project is over two years into its ten-year ambition to sequence all described eukaryotic species in Britain and Ireland. We have sought consensus from a wide range of scientists across taxonomic domains to determine the minimal set of metadata that we collectively deem as critically important to accompany each sequenced specimen. These metadata are made available throughout the subsequent laboratory processes, and once collected, need to be adequately managed to fulfil the requirements of good data management practice. Due to the size and scale of management required, software tools are needed. These tools need to implement rigorous development pathways and change management procedures to ensure that effective research data management of key project and sample metadata is maintained. Tracking of sample properties through the sequencing process is handled by Lab Information Management Systems (LIMS), so publication of the sequenced data is achieved via technical integration of LIMS and data management tools. Discussions with community members on how metadata standards need to be managed within large-scale programmes is a priority in the planning process. Here we report on the standards we developed with respect to a robust and reusable mechanism of metadata collection, in the hopes that other projects forthcoming or underway will adopt these practices for metadata.

2.
Gigascience ; 10(9)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34528664

RESUMO

BACKGROUND: The Investigation/Study/Assay (ISA) Metadata Framework is an established and widely used set of open source community specifications and software tools for enabling discovery, exchange, and publication of metadata from experiments in the life sciences. The original ISA software suite provided a set of user-facing Java tools for creating and manipulating the information structured in ISA-Tab-a now widely used tabular format. To make the ISA framework more accessible to machines and enable programmatic manipulation of experiment metadata, the JSON serialization ISA-JSON was developed. RESULTS: In this work, we present the ISA API, a Python library for the creation, editing, parsing, and validating of ISA-Tab and ISA-JSON formats by using a common data model engineered as Python object classes. We describe the ISA API feature set, early adopters, and its growing user community. CONCLUSIONS: The ISA API provides users with rich programmatic metadata-handling functionality to support automation, a common interface, and an interoperable medium between the 2 ISA formats, as well as with other life science data formats required for depositing data in public databases.


Assuntos
Disciplinas das Ciências Biológicas , Metadados , Bases de Dados Factuais , Software
3.
Patterns (N Y) ; 1(7): 100105, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33205138

RESUMO

Heterogeneous and multidisciplinary data generated by research on sustainable global agriculture and agrifood systems requires quality data labeling or annotation in order to be interoperable. As recommended by the FAIR principles, data, labels, and metadata must use controlled vocabularies and ontologies that are popular in the knowledge domain and commonly used by the community. Despite the existence of robust ontologies in the Life Sciences, there is currently no comprehensive full set of ontologies recommended for data annotation across agricultural research disciplines. In this paper, we discuss the added value of the Ontologies Community of Practice (CoP) of the CGIAR Platform for Big Data in Agriculture for harnessing relevant expertise in ontology development and identifying innovative solutions that support quality data annotation. The Ontologies CoP stimulates knowledge sharing among stakeholders, such as researchers, data managers, domain experts, experts in ontology design, and platform development teams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA