Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(3): 1429-1434, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38445589

RESUMO

Gel-based wound dressings have gained popularity within the healthcare industry for the prevention and treatment of bacterial and fungal infections. Gels based on deep eutectic solvents (DESs), known as eutectogels, provide a promising alternative to hydrogels as they are non-volatile and highly tunable and can solubilize therapeutic agents, including those insoluble in hydrogels. A choline chloride:glycerol-cellulose eutectogel was loaded with numerous antimicrobial agents including silver nanoparticles, black phosphorus nanoflakes, and commercially available pharmaceuticals (octenidine dihydrochloride, tetracycline hydrochloride, and fluconazole). The eutectogels caused >97% growth reduction in Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa bacteria and the fungal species Candida albicans.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Solventes , Solventes Eutéticos Profundos , Prata/farmacologia , Anti-Infecciosos/farmacologia , Hidrogéis
2.
Analyst ; 149(5): 1597-1608, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38291984

RESUMO

Antibiotics are compounds that have a particular mode of action upon the microorganism they are targeting. However, discovering and developing new antibiotics is a challenging and timely process. Antibiotic development process can take up to 10-15 years and over $1billion to develop a single new therapeutic product. Rapid screening tools to understand the mode of action of the new antimicrobial agent are considered one of the main bottle necks in the antimicrobial agent development process. Classical approaches require multifarious microbiological methods and they do not capture important biochemical and organism therapeutic-interaction mechanisms. This work aims to provide a rapid antibiotic-antimicrobial biochemical diagnostic tool to reduce the timeframes of therapeutic development, while also generating new biochemical insight into an antimicrobial-therapeutic screening assay in a complex matrix. The work evaluates the effect of antimicrobial action through "traditional" microbiological analysis techniques with a high-throughput rapid analysis method using UV-VIS spectroscopy and chemometrics. Bacteriostatic activity from tetracycline and bactericidal activity from amoxicillin were evaluated on a system using non-resistant Escherichia coli O157:H7 by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and UV-VIS spectroscopy (high-throughput analysis). The data were analysed using principal component analysis (PCA) and support vector machine (SVM) classification. The rapid diagnostic technique could easily identify differences between bacteriostatic and bactericidal mechanisms and was considerably quicker than the "traditional" methods tested.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Inteligência Artificial , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Análise Espectral , Aprendizado de Máquina , Testes de Sensibilidade Microbiana
3.
ACS Appl Mater Interfaces ; 16(1): 332-341, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38111109

RESUMO

The rise of antibiotic resistance in pathogenic bacteria requires new therapeutics to be developed. Several metallic nanoparticles such as those made from silver, copper, and zinc have shown significant antibacterial activity, in part due to metal ion leaching. Ga3+ containing compounds have also been shown to have antibacterial properties. Accordingly, it is estimated that metallic Ga droplets may be antibacterial, and some studies to date have confirmed this. Here, multiple concentrations of Ga droplets were tested against the antibiotic resistant Gram-positive bacteria methicillin-resistantStaphylococcus aureus (MRSA) and the Gram-negative bacteria Pseudomonas aeruginosa (P. aeruginosa) Despite a high concentration (2 mg/mL), Ga droplets had only modest antibacterial activity against both bacteria after 24 h of interaction. Finally, we demonstrated that Ga droplets were easily functionalized through a galvanic replacement reaction to develop antibacterial particles with copper and silver demonstrating a total detectable reduction of MRSA and >96% reduction ofP. aeruginosa. Altogether, these results contradict previous literature and show that Ga droplets demonstrate no antibacterial activity at concentrations comparable to those of conventional antibiotics and well-established antibacterial nanomaterials and only modest antibacterial activity at very high concentrations. However, we demonstrate that their antibacterial activity can be easily enhanced by functionalization.


Assuntos
Gálio , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Prata/farmacologia , Gálio/farmacologia , Cobre/farmacologia , Antibacterianos/farmacologia , Meticilina , Bactérias , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
4.
ACS Appl Bio Mater ; 7(1): 344-361, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100088

RESUMO

Naturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process. While this technology has received a large amount of scientific and medical interest, one important question still remains: what factors drive microbial death on the surface? In this work, the interplay between microbial-surface adhesion, cell elasticity, cell membrane rupture forces, and cell lysis at the microbial-nanostructure biointerface during adsorptive processes was assessed using a combination of live confocal laser scanning microscopy, scanning electron microscopy, in situ amplitude atomic force microscopy, and single-cell force spectroscopy. Specifically, the adsorptive behavior and nanomechanical properties of live Gram-negative (Pseudomonas aeruginosa) and Gram-positive (methicillin-resistant Staphylococcus aureus) bacterial cells, as well as the fungal species Candida albicans and Cryptococcus neoformans, were assessed on unmodified and nanostructured titanium surfaces. Unmodified titanium and titanium surfaces with nanostructures were used as model substrates for investigation. For all microbial species, cell elasticity, rupture force, maximum cell-surface adhesion force, the work of adhesion, and the cell-surface tether behavior were compared to the relative cell death observed for each surface examined. For cells with a lower elastic modulus, lower force to rupture through the cell, and higher work of adhesion, the surfaces had a higher antimicrobial activity, supporting the proposed biocidal mode of action for nanostructured surfaces. This study provides direct quantification of the differences observed in the efficacy of nanostructured antimicrobial surface as a function of microbial species indicating that a universal, antimicrobial surface architecture may be hard to achieve.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Nanoestruturas , Adesão Celular , Titânio/farmacologia , Titânio/química , Aderência Bacteriana , Nanoestruturas/química , Anti-Infecciosos/farmacologia , Elasticidade
5.
J Colloid Interface Sci ; 628(Pt B): 1049-1060, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049281

RESUMO

HYPOTHESIS: Titanium and its alloys are commonly used implant materials. Once inserted into the body, the interface of the biomaterials is the most likely site for the development of implant-associated infections. Imparting the titanium substrate with high-aspect-ratio nanostructures, which can be uniformly achieved using hydrothermal etching, enables a mechanical contact-killing (mechanoresponsive) mechanism of bacterial and fungal cells. Interaction between cells and the surface shows cellular inactivation via a physical mechanism meaning that careful engineering of the interface is needed to optimse the technology. This mechanism of action is only effective towards surface adsorbed microbes, thus any cells not directly in contact with the substrate will survive and limit the antimicrobial efficacy of the titanium nanostructures. Therefore, we propose that a dual-action mechanoresponsive and chemical-surface approach must be utilised to improve antimicrobial activity. The addition of antimicrobial silver nanoparticles will provide a secondary, chemical mechanism to escalate the microbial response in tandem with the physical puncture of the cells. EXPERIMENTS: Hydrothermal etching is used as a facile method to impart variant nanostrucutres on the titanium substrate to increase the antimicrobial response. Increasing concentrations (0.25 M, 0.50 M, 1.0 M, 2.0 M) of sodium hydroxide etching solution were used to provide differing degrees of nanostructured morphology on the surface after 3 h of heating at 150 °C. This produced titanium nanospikes, nanoblades, and nanowires, respectively, as a function of etchant concentration. These substrates then provided an interface for the deposition of silver nanoparticles via a reduction pathway. Methicillin-resistant Staphylococcous aureus (MRSA) and Candida auris (C. auris) were used as model bacteria and fungi, respectively, to test the effectiveness of the nanostructured titanium with and without silver nanoparticles, and the bio-interactions at the interface. FINDINGS: The presence of nanostructure increased the bactericidal response of titanium against MRSA from âˆ¼ 10 % on commercially pure titanium to a maximum of âˆ¼ 60 % and increased the fungicidal response from âˆ¼ 10 % to âˆ¼ 70 % in C. auris. Introducing silver nanoparticles increased the microbiocidal response to âˆ¼ 99 % towards both bacteria and fungi. Importantly, this study highlights that nanostructure alone is not sufficient to develop a highly antimicrobial titanium substrate. A dual-action, physical and chemical antimicrobial approach is better suited to produce highly effective antibacterial and antifungal surface technologies.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanoestruturas , Prata/farmacologia , Prata/química , Titânio/farmacologia , Titânio/química , Nanopartículas Metálicas/química , Antifúngicos/farmacologia , Hidróxido de Sódio , Nanoestruturas/química , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química , Ligas/farmacologia , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/farmacologia
6.
J Mater Chem B ; 10(37): 7527-7539, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35024716

RESUMO

In the fight against drug-resistant pathogenic bacterial and fungal cells, low-dimensional materials are emerging as a promising alternative treatment method. Specifically, few-layer black phosphorus (BP) has demonstrated its effectiveness against a wide range of pathogenic bacterial and fungal cells with studies suggesting low cytotoxicity towards healthy mammalian cells. However, the antimicrobial mechanism of action of BP is not well understood. Before new applications for this material can be realised, further in-depth investigations are required. In this work, the biochemical interaction between BP and a series of microbial cells is investigated using a variety of microscopy and spectroscopy techniques to provide a greater understanding of the antimicrobial mechanism. Synchrotron macro-attenuated total reflection-Fourier transform infrared (ATR-FTIR) micro-spectroscopy is used to elucidate the chemical changes occurring outside and within the cell of interest after exposure to BP nanoflakes. The ATR-FTIR data, coupled with high-resolution microscopy, reveals major physical and bio-chemical changes to the phospholipids and amide I and II proteins, as well as minor chemical changes to the structural polysaccharides and nucleic acids when compared to untreated cells. These changes can be attributed to the physical interaction of the BP nanoflakes with the cell membranes, combined with the oxidative stress induced by the degradation of the BP nanoflakes. This study provides insight into the biochemical interaction of BP nanoflakes with microbial cells, allowing for a better understanding of the antimicrobial mechanism of action that will be important for the next generation of applications such as implant coatings, wound dressings, or medical surfaces.


Assuntos
Anti-Infecciosos , Ácidos Nucleicos , Amidas , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Análise de Fourier , Mamíferos , Fósforo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Síncrotrons
7.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202224

RESUMO

Biofilms are assemblages of microbial cells, extracellular polymeric substances (EPS), and other components extracted from the environment in which they develop. Within biofilms, the spatial distribution of these components can vary. Here we present a fundamental characterization study to show differences between biofilms formed by Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative Pseudomonas aeruginosa, and the yeast-type Candida albicans using synchrotron macro attenuated total reflectance-Fourier transform infrared (ATR-FTIR) microspectroscopy. We were able to characterise the pathogenic biofilms' heterogeneous distribution, which is challenging to do using traditional techniques. Multivariate analyses revealed that the polysaccharides area (1200-950 cm-1) accounted for the most significant variance between biofilm samples, and other spectral regions corresponding to amides, lipids, and polysaccharides all contributed to sample variation. In general, this study will advance our understanding of microbial biofilms and serve as a model for future research on how to use synchrotron source ATR-FTIR microspectroscopy to analyse their variations and spatial arrangements.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Pseudomonas aeruginosa/fisiologia , Síncrotrons , Análise de Fourier , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Nat Commun ; 12(1): 3897, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162835

RESUMO

A major health concern of the 21st century is the rise of multi-drug resistant pathogenic microbial species. Recent technological advancements have led to considerable opportunities for low-dimensional materials (LDMs) as potential next-generation antimicrobials. LDMs have demonstrated antimicrobial behaviour towards a variety of pathogenic bacterial and fungal cells, due to their unique physicochemical properties. This review provides a critical assessment of current LDMs that have exhibited antimicrobial behaviour and their mechanism of action. Future design considerations and constraints in deploying LDMs for antimicrobial applications are discussed. It is envisioned that this review will guide future design parameters for LDM-based antimicrobial applications.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Micoses/tratamento farmacológico , Anti-Infecciosos/química , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes/crescimento & desenvolvimento , Candida/fisiologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Humanos , Micoses/microbiologia , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Tamanho da Partícula
9.
ACS Appl Mater Interfaces ; 13(15): 17340-17352, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33844492

RESUMO

Antimicrobial resistance has rendered many conventional therapeutic measures, such as antibiotics, ineffective. This makes the treatment of infections from pathogenic micro-organisms a major growing health, social, and economic challenge. Recently, nanomaterials, including two-dimensional (2D) materials, have attracted scientific interest as potential antimicrobial agents. Many of these studies, however, rely on the input of activation energy and lack real-world utility. In this work, we present the broad-spectrum antimicrobial activity of few-layered black phosphorus (BP) at nanogram concentrations. This property arises from the unique ability of layered BP to produce reactive oxygen species, which we harness to create this unique functionality. BP is shown to be highly antimicrobial toward susceptible and resistant bacteria and fungal species. To establish cytotoxicity with mammalian cells, we showed that both L929 mouse and BJ-5TA human fibroblasts were metabolically unaffected by the presence of BP. Finally, we demonstrate the practical utility of this approach, whereby medically relevant surfaces are imparted with antimicrobial properties via functionalization with few-layer BP. Given the self-degrading properties of BP, this study demonstrates a viable and practical pathway for the deployment of novel low-dimensional materials as antimicrobial agents without compromising the composition or nature of the coated substrate.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Fósforo/química , Animais , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA