Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(5): 2523-2531, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705014

RESUMO

Perilla frutescens (L.), a traditional edible and medicinal crop, contains diverse triterpenes with multiple pharmacological properties. However, the biosynthesis of triterpenes in perilla remains rarely revelation. In this study, nine putative 2,3-oxidosqualene cyclase (OSC) genes (PfOSC1-9) were screened from the P. frutescens genome and functionally characterized by heterologous expression. Camelliol C, a triterpenol with pharmacological effect, was first identified as abundant in perilla seeds, and the camelliol C synthase (PfOSC7) was first identified in P. frutescens utilizing a yeast system. In addition, PfOSC2, PfOSC4, and PfOSC9 were identified as cycloartenol, lupeol, and ß-amyrin synthase, respectively. Molecular docking and site-directed mutagenesis revealed that changes in Leu253 of PfOSC4, Ala480 of PfOSC7, and Trp257 of PfOSC9 might lead to variations of catalytic specificity or efficiency. These results will provide key insights into the biosynthetic pathways of triterpenoids and have great significance for germplasm breeding in P. frutescens.


Assuntos
Perilla frutescens , Triterpenos , Perilla frutescens/metabolismo , Simulação de Acoplamento Molecular , Melhoramento Vegetal , Triterpenos/metabolismo
2.
J Agric Food Chem ; 70(26): 8075-8084, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729682

RESUMO

Camellia sasanqua is an important economic plant that is rich in lipophilic triterpenols with pharmacological activities including antiallergic, anti-inflammatory, and anticancer activities. However, the key enzymes related to triterpene biosynthesis have seldom been studied in C. sasanqua. Oxidosqualene cyclases (OSCs) are the rate-limiting enzymes related to triterpene biosynthesis. In this study, seven putative OSC genes (CsOSC1-7) were mined from the C. sasanqua transcriptome. Six CsOSCs were characterized for the biosynthesis of diverse triterpene skeletons, including α-amyrin, ß-amyrin, δ-amyrin, dammarenediol-II, ψ-taraxasterol, taraxasterol, and cycloartenol by the heterologous expression system. CsOSC3 was a multiple functional α-amyrin synthase. Three key residues, Trp260, Tyr262, and Phe415, are critical to the catalytic performance of CsOSC3 judging from the results of molecular docking and site-directed mutagenesis. These findings provide important insights into the biosynthesis pathway of triterpenes in C. sasanqua.


Assuntos
Camellia , Triterpenos , Camellia/genética , Camellia/metabolismo , Simulação de Acoplamento Molecular , Esqualeno/análogos & derivados , Esqualeno/metabolismo , Triterpenos/química
3.
Synth Syst Biotechnol ; 7(1): 621-630, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35198747

RESUMO

Anemarrhena asphodeloides is an immensely popular medicinal herb in China, which contains an abundant of mangiferin. As an important bioactive xanthone C-glycoside, mangiferin possesses a variety of pharmacological activities and is derived from the cyclization reaction of a benzophenone C-glycoside (maclurin). Biosynthetically, C-glycosyltransferases are critical for the formation of benzophenone C-glycosides. However, the benzophenone C-glycosyltransferases from Anemarrhena asphodeloides have not been discovered. Herein, a promiscuous C-glycosyltransferase (AaCGT) was identified from Anemarrhena asphodeloides. It was able to catalyze efficiently mono-C-glycosylation of benzophenone, together with di-C-glycosylation of dihydrochalcone. It also exhibited the weak O-glycosylation or potent S-glycosylation capacities toward 12 other types of flavonoid scaffolds and a simple aromatic compound with -SH group. Homology modeling and mutagenesis experiments revealed that the glycosylation reaction of AaCGT was initiated by the conserved residue H23 as the catalytic base. Three critical residues H356, W359 and D380 were involved in the recognition of sugar donor through hydrogen-bonding interactions. In particular, the double mutant of F94W/L378M led to an unexpected enzymatic conversion of mono-C- to di-C-glycosylation. This study highlights the important value of AaCGT as a potential biocatalyst for efficiently synthesizing high-value C-glycosides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA