Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 11(2): 1004-1008, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35044750

RESUMO

Cell-free expression systems, such as the highly purified in vitro reconstituted PURExpress, hold great promise for engineering biological and life-similar systems by exploiting the ability to perform transcription and translation (TX-TL) outside the constraints of living cells, including for example the expression of recombinant proteins that are difficult or toxic to produce in vivo. Currently, the scope of applications utilizing purified reconstituted TX-TL systems is challenged by poor system performance resulting from limitations in the ribosome and ribosome-associated processes, leading to low protein yields. Because of the transient nature of ribosomal protein S1's interaction with the ribosome, the ribosomes in a reconstituted translation system contain varying amounts of S1, potentially impacting translation initiation and the recruitment of mRNA to the 30S ribosomal subunit. Here we report that by being supplemented with purified recombinant S1 the protein yields can be doubled when using a commercial in vitro reconstituted TX-TL system. We hypothesize that the addition of S1 increases the fraction of functional ribosomes available in the in vitro reaction. Improved yields are shown for different reporter proteins (EYFP, sfGFP, and mRFP) and in different 5'UTR contexts (strong, medium, and weak ribosome binding site), including the expression of a highly structured RNA (PSIV IRES). Overall, fine-tuning the S1 concentration provides a previously overlooked venue to increase protein yield by targeting ribosome composition and translation initiation.


Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas , Sistema Livre de Células/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
2.
Biochem Cell Biol ; 99(6): 766-771, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34559974

RESUMO

Cell-free synthetic biology is a rapidly developing biotechnology with the potential to solve the world's biggest problems; however, this promise also has implications for global biosecurity and biosafety. Given the current situation of COVID-19 and its economic impact, capitalizing on the potential of cell-free synthetic biology from an economic, biosafety, and biosecurity perspective contributes to our preparedness for the next pandemic, and urges the development of appropriate policies and regulations, together with the necessary mitigation technologies. Proactive involvement from scientists is necessary to avoid misconceptions and assist in the policymaking process.


Assuntos
COVID-19/terapia , Biologia Sintética/economia , Biologia Sintética/legislação & jurisprudência , Materiais Biocompatíveis , Tecnologia Biomédica , Biosseguridade , Biotecnologia , Sistema Livre de Células , Difusão de Inovações , Política de Saúde , Humanos , Segurança , Biologia Sintética/tendências
3.
PLoS One ; 14(7): e0219961, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339905

RESUMO

Pathogen monitoring, detection and removal are essential to public health and outbreak management. Systems are in place for monitoring the microbial load of hospitals and public health facilities with strategies to mitigate pathogen spread. However, no such strategies are in place for ambulances, which are tasked with transporting at-risk individuals in immunocompromised states. As standard culturing techniques require a laboratory setting, and are time consuming and labour intensive, our approach was designed to be portable, inexpensive and easy to use based on the MinION third-generation sequencing platform from Oxford Nanopore Technologies. We developed a transferable sampling-to-analysis pipeline to characterize the microbial community in emergency medical service vehicles. Our approach identified over sixty-eight organisms in ambulances to the genera level, with a proportion of these being connected with health-care associated infections, such as Clostridium spp. and Staphylococcus spp. We also monitored the microbiome of different locations across three ambulances over time, and examined the dynamic community of microorganisms found in emergency medical service vehicles. Observed differences identified hot spots, which may require heightened monitoring and extensive cleaning. Through metagenomics analysis it is also possible to identify how microorganisms spread between patients and colonize an ambulance over time. The sequencing results aid in the development of practices to mitigate disease spread, while also providing a useful tool for outbreak prediction through ongoing analysis of the ambulance microbiome to identify new and emerging pathogens. Overall, this pipeline allows for the tracking and monitoring of pathogenic microorganisms of epidemiological interest, including those related to health-care associated infections.


Assuntos
Ambulâncias/normas , Monitoramento Biológico/métodos , Metagenômica/métodos , Microbiota , Sequenciamento por Nanoporos/métodos , Clostridium/genética , Clostridium/isolamento & purificação , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , DNA Bacteriano/química , DNA Bacteriano/genética , Staphylococcus/genética , Staphylococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA