Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
SLAS Technol ; 26(6): 579-590, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34813400

RESUMO

Current high-throughput screening assay optimization is often a manual and time-consuming process, even when utilizing design-of-experiment approaches. A cross-platform, Cloud-based Bayesian optimization-based algorithm was developed as part of the National Center for Advancing Translational Sciences (NCATS) ASPIRE (A Specialized Platform for Innovative Research Exploration) Initiative to accelerate preclinical drug discovery. A cell-free assay for papain enzymatic activity was used as proof of concept for biological assay development and system operationalization. Compared with a brute-force approach that sequentially tested all 294 assay conditions to find the global optimum, the Bayesian optimization algorithm could find suitable conditions for optimal assay performance by testing 21 assay conditions on average, with up to 20 conditions being tested simultaneously, as confirmed by repeated simulation. The algorithm could achieve a sevenfold reduction in costs for lab supplies and high-throughput experimentation runtime, all while being controlled from a remote site through a secure connection. Based on this proof of concept, this technology is expected to be applied to more complex biological assays and automated chemistry reaction screening at NCATS, and should be transferable to other institutions.


Assuntos
Algoritmos , Ensaios de Triagem em Larga Escala , Teorema de Bayes , Bioensaio , Ciência Translacional Biomédica
2.
J Chem Phys ; 151(12): 121102, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575171

RESUMO

Singlet exciton fission is a mechanism that could potentially enable solar cells to surpass the Shockley-Queisser efficiency limit by converting single high-energy photons into two lower-energy triplet excitons with minimal thermalization loss. The ability to make use of singlet exciton fission to enhance solar cell efficiencies has been limited, however, by the sparsity of singlet fission materials with triplet energies above the bandgaps of common semiconductors such as Si and GaAs. Here, we employ a high-throughput virtual screening procedure to discover new organic singlet exciton fission candidate materials with high-energy (>1.4 eV) triplet excitons. After exploring a search space of 4482 molecules and screening them using time-dependent density functional theory, we identify 88 novel singlet exciton fission candidate materials based on anthracene derivatives. Subsequent purification and characterization of several of these candidates yield two new singlet exciton fission materials: 9,10-dicyanoanthracene (DCA) and 9,10-dichlorooctafluoroanthracene (DCOFA), with triplet energies of 1.54 eV and 1.51 eV, respectively. These materials are readily available and low-cost, making them interesting candidates for exothermic singlet exciton fission sensitization of solar cells. However, formation of triplet excitons in DCA and DCOFA is found to occur via hot singlet exciton fission with excitation energies above ∼3.64 eV, and prominent excimer formation in the solid state will need to be overcome in order to make DCA and DCOFA viable candidates for use in a practical device.

4.
ACS Cent Sci ; 4(2): 268-276, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29532027

RESUMO

We report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This model allows us to generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds. A deep neural network was trained on hundreds of thousands of existing chemical structures to construct three coupled functions: an encoder, a decoder, and a predictor. The encoder converts the discrete representation of a molecule into a real-valued continuous vector, and the decoder converts these continuous vectors back to discrete molecular representations. The predictor estimates chemical properties from the latent continuous vector representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.

5.
Nat Mater ; 16(2): 220-224, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27723738

RESUMO

Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

6.
J Am Chem Soc ; 138(44): 14772-14782, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27766856

RESUMO

Electrically conductive metal-organic frameworks (MOFs) are emerging as a subclass of porous materials that can have a transformative effect on electronic and renewable energy devices. Systematic advances in these materials depend critically on the accurate and reproducible characterization of their electrical properties. This is made difficult by the numerous techniques available for electrical measurements and the dependence of metrics on device architecture and numerous external variables. These challenges, common to all types of electronic materials and devices, are especially acute for porous materials, whose high surface area make them even more susceptible to interactions with contaminants in the environment. Here, we use the anisotropic semiconducting framework Cd2(TTFTB) (TTFTB4- = tetrathiafulvalene tetrabenzoate) to benchmark several common methods available for measuring electrical properties in MOFs. We show that factors such as temperature, chemical environment (atmosphere), and illumination conditions affect the quality of the data obtained from these techniques. Consistent results emerge only when these factors are strictly controlled and the morphology and anisotropy of the Cd2(TTFTB) single-crystal devices are taken into account. Most importantly, we show that depending on the technique, device construction, and/or the environment, a variance of 1 or even 2 orders of magnitude is not uncommon for even just one material if external factors are not controlled consistently. Differences in conductivity values of even 2 orders of magnitude should therefore be interpreted with caution, especially between different research groups comparing different compounds. These results allow us to propose a reliable protocol for collecting and reporting electrical properties of MOFs, which should help improve the consistency and comparability of reported electrical properties for this important new class of crystalline porous conductors.

7.
Nat Commun ; 7: 10942, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26952523

RESUMO

Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.

8.
Angew Chem Int Ed Engl ; 54(40): 11817-21, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26288342

RESUMO

The thermally stable [(tBuMe2 Si)2 M] (M=Zn, Hg) generate R3 Si(.) radicals in the presence of [(dmpe)Pt(PEt3 )2 ] at 60-80 °C. The reaction proceeds via hexacoordinate Pt complexes, (M=Zn (2 a and 2 b), M=Hg (3 a and 3 b)) which were isolated and characterized. Mild warming or photolysis of 2 or 3 lead to homolytic dissociation of the Pt-MSiR3 bond generating silyl radicals and novel unstable pentacoordinate platinum paramagnetic complexes (M=Zn (5), Hg (6)) whose structures were determined by EPR spectroscopy and DFT calculations.

9.
Angew Chem Int Ed Engl ; 54(14): 4349-52, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25678397

RESUMO

The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm(-1) (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.

10.
Chem Sci ; 6(1): 360-371, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28966762

RESUMO

Polyfurans have never been established as useful conjugated polymers, as previously they were considered to be inherently unstable and poorly conductive. Here, we show the preparation of stable and conducting polyfuran films by electropolymerization of a series of oligofurans of different chain lengths substituted with alkyl groups. The polyfuran films show good conductivity in the order of 1 S cm-1, good environmental and electrochemical stabilities, very smooth morphologies (roughness 1-5 nm), long effective conjugation lengths, well-defined spectroelectrochemistry and electro-optical switching (in the Vis-NIR region), and have optical band-gaps in the range of 2.2-2.3 eV. A low oxidation potential needed for polymerization of oligofurans (compared to furan) is a key factor in achievement of improved properties of polyfurans reported in this work. DFT calculations and experiments show that polyfurans are much more rigid than polythiophenes, and alkyl substitution does not disturb backbone planarity and conjugation. The obtained properties of polyfuran films are similar or superior to the properties of electrochemically prepared poly(oligothiophene)s under similar conditions.

11.
J Am Chem Soc ; 136(25): 8859-62, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24750124

RESUMO

Reaction of 2,3,6,7,10,11-hexaaminotriphenylene with Ni(2+) in aqueous NH3 solution under aerobic conditions produces Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), a new two-dimensional metal-organic framework (MOF). The new material can be isolated as a highly conductive black powder or dark blue-violet films. Two-probe and van der Pauw electrical measurements reveal bulk (pellet) and surface (film) conductivity values of 2 and 40 S·cm(-1), respectively, both records for MOFs and among the best for any coordination polymer.

12.
J Am Chem Soc ; 136(6): 2592-601, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24437464

RESUMO

Well-defined monodisperse conjugated oligomers, which have planar backbones and are free from the disturbance of substituents, attract broad interest. Herein, we report a series of symmetrical, isomerically pure oligofurans, namely, the 16-mer 16F-6C6 together with the related nF-2C6 (n = 4, 6, 8). Through computational studies and detailed spectroscopic and X-ray characterization, for the first time, we show that the planarity of the furan backbone is almost unaffected by the head-to-head defect which is known to cause considerable twists in its oligo- or polythiophene analogues. We present that the properties of these rigid oligo(alkylfuran)s are strongly influenced by the conjugation length. As the longest monodisperse α-oligofuran synthesized to date, 16F-6C6 was observed to be stable and highly fluorescent. Experimental and computational studies of the redox states of these oligo(alkylfuran)s reveal that 16F-6C6 has singlet biradical (polaron-pair) character in the doubly oxidized ground state: the open-shell singlet (⟨S2⟩ = 0.989) is 3.8 kcal/mol more stable than the closed-shell dication.

13.
Chem Commun (Camb) ; 48(53): 6732-4, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22641375

RESUMO

A Raman spectroscopic analysis revealed that π-conjugation does not reach saturation at least up to the octamer in long α-oligofurans and spreads over 14-15 furan units in the polyfuran. Comparing DFT calculations with experimental results suggests that a considerable amount of HF exchange is required to reproduce computationally the observed conjugation.

14.
Chem Commun (Camb) ; 48(54): 6776-8, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22576670

RESUMO

We show that interactions between the electrode surface and the transition metal during the initial step of metal nanoparticle formation can be utilized to control the formation and size of metal nanoparticles deposited on a conducting surface. Pt nanoparticles formed on the PEDOS surface are of smaller size compared to the PEDOT surface.

15.
J Am Chem Soc ; 133(28): 10803-16, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21710966

RESUMO

The high reactivity of acenes can reduce their potential applications in the field of molecular electronics. Although pentacene is an important material for use in organic field-effect transistors because of its high charge mobility, its reactivity is a major disadvantage hindering the development of pentacene applications. In this study, several reaction pathways for the thermal dimerization of acenes were considered computationally. The formation of acene dimers via a central benzene ring and the formation of acene-based polymers were found to be the preferred pathways, depending on the length of the monomer. Interestingly, starting from hexacene, acene dimers are thermodynamically disfavored products, and the reaction pathway is predicted to proceed instead via a double cycloaddition reaction (polymerization) to yield acene-based polymers. A concerted asynchronous reaction mechanism was found for benzene and naphthalene dimerization, while a stepwise biradical mechanism was predicted for the dimerization of anthracene, pentacene, and heptacene. The biradical mechanism for dimerization of anthracene and pentacene proceeds via syn or anti transition states and biradical minima through stepwise biradical pathways, while dimerization of heptacene proceeds via asynchronous ring closure of the complex formed by two heptacene molecules. The activation barriers for thermal dimerization decrease rapidly with increasing acene chain length and are calculated (at M06-2X/6-31G(d)+ZPVE) to be 77.9, 57.1, 33.3, -0.3, and -12.1 kcal/mol vs two isolated acene molecules for benzene, naphthalene, anthracene, pentacene, and heptacene, respectively. If activation energy is calculated vs the initially formed complex of two acene molecules, then the calculated barriers are 80.5, 63.2, 43.7, 16.7, and 12.3 kcal/mol. Dimerization is exothermic from anthracene onward, but it is endothermic at the terminal rings, even for heptacene. Phenyl substitution at the most reactive meso-carbon atoms of the central ring of acene blocks the reactivity of this ring but does not efficiently prevent dimerization through other rings.

17.
J Am Chem Soc ; 131(33): 11698-700, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19722593

RESUMO

Reaction of silyl substituted dichlorosilanes with lithiosilanes in hexane leads exclusively to the corresponding stable silyl radicals. Two radicals, the new (t-Bu(2)MeSi)(2)HSi(t-Bu(2)MeSi)(2)Si* (1) and the previously isolated (t-Bu(2)MeSi)(3)Si* (2), were isolated and fully characterized including by X-ray crystallography. This one-step method is general and was applied for the synthesis of other silyl radicals. Upon irradiation radical 1 (yellow solution in hexane) decays to yield the corresponding disproportionation products, silane and disilene (blue colored). In contrast, radical 2 is photostable in the absence of additives, but it abstracts hydrogen from triethylsilane and 2-propanol upon irradiation. DFT calculations and irradiation experiments with lambda > 400 nm suggest that SOMO-1 --> SOMO excitation, which provides better electron accepting properties to the radical, is responsible for the photoreactivity of 1 and 2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA