Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(14): e34627, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39114050

RESUMO

Environmental monitoring and assessment aim to gather data economically, without bias, using efficient and cost-effective sampling methods. One such traditional method is Ranked Set Sampling (RSS), often employed to achieve observational economy. This article introduces an innovative two-stage sampling approach for ranked set sampling (RSS) to get a more precise estimate of the population mean. Modified Median Quartile Double Ranked Set Sampling (MMQDRSS) highlights the ranked base technique's potential as a cost-effective sampling method. To evaluate the performance of the proposed estimator by using real-life data and conducting a simulation study to compare the relative efficiency of the proposed estimator with some existing methods.

2.
ACS Omega ; 9(28): 30478-30491, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035905

RESUMO

Drought is an inevitable environmental stress that drastically hampers the growth, productivity, and quality of food crops. Exogenous sodium nitroprusside and spermidine have decisive functions in the growth enhancement of plants; nevertheless, their specific role in mediating stress responses to improve drought tolerance in sunflowers at the reproductive stage (terminal drought) remains largely unknown. In the present study, we explored the positive effects of sodium nitroprusside and spermidine on physiological responses to increase in sunflower yield during periods of terminal drought. Initially, various doses (50, 100, 150, 200, 400 µM) for each sodium nitroprusside or spermidine were foliar sprayed to improve water content, chlorophylls, and biomass accumulation in sunflower seedlings under control (100% FC) and drought (60% FC) conditions. Optimized rates (100 µM for sodium nitroprusside) and (100 µM for spermidine) were further tested alone and in combination to assess drought tolerance potential and their ultimate impact on yield under drought stress. Drought exposure caused a marked reduction in relative water content (26%) and chlorophyll a (31%) and b (35%) contents; however, sodium nitroprusside and spermidine at 100 µM significantly improved the growth of sunflower (13%). Furthermore, combined use of sodium nitroprusside and spermidine at 100 + 100 µM markedly improved the achenes per head (16%), 1000-achene weight (14%), and ultimately grain (28%) and oil (21%) yields of sunflowers under drought stress. A strong association was found between the 1000-achene weight and the achene yield of sunflower. Hence, combined sodium nitroprusside and spermidine upregulate water balance and chlorophyll contents to increase sunflower yield under terminal drought.

3.
Heliyon ; 10(13): e33969, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071600

RESUMO

The endogeneity problem arises when the auxiliary variables correlate to the error terms. In such cases, appropriate instrumental variables ensure efficient estimation. Calibration has recognized itself as an important methodological tool at a large scale to estimate the population total in survey sampling. Which does not offer efficient estimation in the presence of endogeneity. When endogeneity is present in the auxiliary variables, the calibration using endogenous auxiliary variables may produce biasedness and increase variance due to inappropriate model assumptions. In this article, we propose instrumental-variable calibrated estimators by using the classical instrumental-variables approach for the case of exact identification that are more efficient than conventional calibration estimators when some auxiliary variables are endogenous. The necessary properties of the proposed estimators are presented. Our study is backed by both the simulation study and a real data example to check the performance of the proposed estimators.

4.
Front Microbiol ; 15: 1356426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894971

RESUMO

Climate change is one of the main challenges, and it poses a tough challenge to the agriculture industry globally. Additionally, greenhouse gas (GHG) emissions are the main contributor to climate change; however, croplands are a prominent source of GHG emissions. Yet this complex challenge can be mitigated through climate-smart agricultural practices. Conservation tillage is commonly known to preserve soil and mitigate environmental change by reducing GHG emissions. Nonetheless, there is still a paucity of information on the influences of conservation tillage on wheat yield, soil properties, and GHG flux, particularly in the semi-arid Dingxi belt. Hence, in order to fill this gap, different tillage systems, namely conventional tillage (CT) control, straw incorporation with conventional tillage (CTS), no-tillage (NT), and stubble return with no-tillage (NTS), were laid at Dingxi, Gansu province of China, under a randomized complete block design with three replications to examine their impacts on yield, soil properties, and GHG fluxes. Results depicted that different conservative tillage systems (CTS, NTS, and NT) significantly (p < 0.05) increased the plant height, number of spikes per plant, seed number per meter square, root yield, aboveground biomass yield, thousand-grain weight, grain yield, and dry matter yield compared with CT. Moreover, these conservation tillage systems notably improved the soil properties (soil gravimetric water content, water-filled pore space, water storage, porosity, aggregates, saturated hydraulic conductivity, organic carbon, light fraction organic carbon, carbon storage, microbial biomass carbon, total nitrogen, available nitrogen storage, microbial biomass nitrogen, total phosphorous, available phosphorous, total potassium, available potassium, microbial counts, urease, alkaline phosphatase, invertase, cellulase, and catalase) while decreasing the soil temperature and bulk density over CT. However, CTS, NTS, and NT had non-significant effects on ECe, pH, and stoichiometric properties (C:N ratio, C:P ratio, and N:P ratio). Additionally, conservation-based tillage regimes NTS, NT, and CTS significantly (p < 0.05) reduced the emission and net global warming potential of greenhouse gases (carbon dioxide, methane, and nitrous oxide) by 23.44, 19.57, and 16.54%, respectively, and decreased the greenhouse gas intensity by 23.20, 29.96, and 18.72%, respectively, over CT. We conclude that NTS is the best approach to increasing yield, soil and water conservation, resilience, and mitigation of agroecosystem capacity.

5.
ACS Omega ; 9(18): 20042-20055, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737051

RESUMO

Drought is the worst environmental stress constraint that inflicts heavy losses to global food production, such as wheat. The metabolic responses of seeds produced overtransgenerational exposure to e[CO2] to recover drought's effects on wheat are still unexplored. Seeds were produced constantly for four generations (F1 to F4) under ambient CO2 (a[CO2], 400 µmol L-1) and elevated CO2 (e[CO2], 800 µmol L-1) concentrations, and then further regrown under natural CO2 conditions to investigate their effects on the stress memory metabolic processes liable for increasing drought resistance in the next generation (F5). At the anthesis stage, plants were subjected to normal (100% FC, field capacity) and drought stress (60% FC) conditions. Under drought stress, plants of transgenerational e[CO2] exposed seeds showed markedly increased superoxide dismutase (16%), catalase (24%), peroxidase (9%), total antioxidants (14%), and proline (35%) levels that helped the plants to sustain normal growth through scavenging of hydrogen peroxide (11%) and malondialdehyde (26%). The carbohydrate metabolic enzymes such as aldolase (36%), phosphoglucomutase (12%), UDP-glucose pyrophosphorylase (25%), vacuolar invertase (33%), glucose-6-phosphate-dehydrogenase (68%), and cell wall invertase (17%) were decreased significantly; however, transgenerational seeds produced under e[CO2] showed a considerable increase in their activities in drought-stressed wheat plants. Moreover, transgenerational e[CO2] exposed seeds under drought stress caused a marked increase in leaf Ψw (15%), chlorophyll a (19%), chlorophyll b (8%), carotenoids (12%), grain spike (16%), hundred grain weight (19%), and grain yield (10%). Hence, transgenerational seeds exposed to e[CO2] upregulate the drought recovery metabolic processes to improve the grain yield of wheat under drought stress conditions.

6.
Heliyon ; 10(6): e27724, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38500979

RESUMO

Lead (Pb) is a highly toxic contaminant that is ubiquitously present in the ecosystem and poses severe environmental issues, including hazards to soil-plant systems. This review focuses on the uptake, accumulation, and translocation of Pb metallic ions and their toxicological effects on plant morpho-physiological and biochemical attributes. We highlight that the uptake of Pb metal is controlled by cation exchange capacity, pH, size of soil particles, root nature, and other physio-chemical limitations. Pb toxicity obstructs seed germination, root/shoot length, plant growth, and final crop-yield. Pb disrupts the nutrient uptake through roots, alters plasma membrane permeability, and disturbs chloroplast ultrastructure that triggers changes in respiration as well as transpiration activities, creates the reactive oxygen species (ROS), and activates some enzymatic and non-enzymatic antioxidants. Pb also impairs photosynthesis, disrupts water balance and mineral nutrients, changes hormonal status, and alters membrane structure and permeability. This review provides consolidated information concentrating on the current studies associated with Pb-induced oxidative stress and toxic conditions in various plants, highlighting the roles of different antioxidants in plants mitigating Pb-stress. Additionally, we discussed detoxification and tolerance responses in plants by regulating different gene expressions, protein, and glutathione metabolisms to resist Pb-induced phytotoxicity. Overall, various approaches to tackle Pb toxicity have been addressed; the phytoremediation techniques and biochar amendments are economical and eco-friendly remedies for improving Pb-contaminated soils.

8.
Pak J Med Sci ; 40(2ICON Suppl): S97-S99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38328648

RESUMO

Primary Giant Cell Tumor of Soft Tissue (GCT-ST) is a rare disease, a neoplasm with low potential for malignancy. It belongs to the group of Fibrohistiocytic tumors with borderline malignancy. Most commonly it presents as a painless, slow-growing mass in a superficial location. It is associated with lower local recurrence rate as compared to GCT of bone but has a higher rate for metastasis and mortality. A case of rare GCT-ST with suspicion of lung metastasis is being reported here. The lesion per-operatively appeared to be growing from the periosteum of the bone (tibia in our case). After excisional biopsy it proved to be GCT-ST which has never been reported previously in literature.

9.
Small ; 20(20): e2307956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38143295

RESUMO

A cross-comparison of three stop-flow configurations-such as low-pressure (LSF), high-pressure open-circuit (OC-HSF), and high-pressure short-circuit (SC-HSF) stop-flow-is presented to rapidly bring a high velocity flow O(m s-1) within a microchannel to a standstill O(µm s-1). The performance of three stop-flow configurations is assessed by measuring residual flow velocities within microchannels having three orders of magnitude different flow resistances. The LSF configuration outperforms the OC-HSF and SC-HSF configurations within a high flow resistance microchannel and results in a residual velocity of <10 µm s-1. The OC-HSF configuration results in a residual velocity of <150 µm s-1 within a low flow resistance microchannel. The SC-HSF configuration results in a residual velocity of <200 µm s-1 across the three orders-of-magnitude different flow resistance microchannels, and <100 µm s-1 for the low flow resistance channel. It is hypothesized that residual velocity results from compliance in fluidic circuits, which is further investigated by varying the elasticity of microchannel walls and connecting tubing. A numerical model is developed to estimate the expanded volumes of the compliant microchannel and connecting tubings under a pressure gradient and to calculate the distance traveled by the sample fluid. A comparison of the numerically and experimentally obtained traveling distances confirms the hypothesis that the residual velocities are an outcome of the compliance in the fluidic circuit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA