Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Psychoneuroendocrinology ; 150: 106044, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36753883

RESUMO

A prominent body of research spanning disciplines has been focused on the potential underlying role for oxytocin in the social signatures of monogamous mating bonds. Behavioral differences between monogamous and non-monogamous vole species, putatively mediated by oxytocinergic function, constitute a key source of support for this mechanism, but it is unclear to what extent this hormone-behavior linkage extends to the primate order. In a preregistered experiment, we test if oxytocin receptor blockade affects affiliative behavior in mixed-sex pairs of Eulemur, a genus of strepsirrhine primate containing both monogamous and non-monogamous species. Inconsistent with past studies in monogamous voles or monkeys, we do not find confirmatory evidence in Eulemur that monogamous pairs affiliate more than non-monogamous pairs, nor that oxytocin receptor blockade of one pair member selectively corresponds to reduced affiliative or scent-marking behavior in monogamous species. We do, however, find exploratory evidence of a pattern not previously investigated: simultaneously blocking oxytocin receptors in both members of a monogamous pair predicts lower rates of affiliative behavior relative to controls. Our study demonstrates the value of non-traditional animal models in challenging generalizations based on model organisms, and of methodological reform in providing a potential path forward for behavioral oxytocin research.


Assuntos
Lemuridae , Receptores de Ocitocina , Animais , Receptores de Ocitocina/fisiologia , Ocitocina/fisiologia , Comportamento Social , Ligação do Par , Arvicolinae/fisiologia , Comportamento Sexual Animal/fisiologia
2.
Horm Behav ; 139: 105108, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033896

RESUMO

In the decades since female social dominance was first described in strepsirrhine primates, researchers have sought to uncover the proximate and ultimate explanations for its development. In the females of various female-dominant species, androgens have been implicated as regulators of behavior and/or predictors of seasonal fluctuations in aggression (the 'Female Masculinization Hypothesis'). Males, more generally, respond to changing social demands via seasonal fluctuations in androgen-mediated behavior (the 'Challenge Hypothesis'), that may also entail changes in activation of the hypothalamic-pituitary-adrenal axis. Here, we explore if androgens, glucocorticoids, and intersexual behavior fluctuate seasonally in the female-dominant, blue-eyed black lemur (Eulemur flavifrons), with potential consequences for understanding female aggression and male deference. Across two studies conducted during the breeding and nonbreeding seasons, we assessed rates of mixed-sex, dyadic social behavior (aggression and affiliation) and concentrations of fecal glucocorticoid metabolites (Study 1) and serum sex hormones (androstenedione, testosterone, and estradiol; Study 2). Our results align with several predictions inspired by the Female Masculinization and Challenge Hypotheses for intersexual relations: During the breeding season, specifically, both aggression and androstenedione peaked in females, while female-initiated affiliation decreased, potentially to facilitate female resource access and reproductive control. By comparison, all target hormones (androgens, estrogen, and glucocorticoids) peaked in males, with glucocorticoid concentrations potentially increasing in response to the surge in female aggression, and unusually high estrogen concentrations year-round potentially facilitating male deference via male-initiated affiliation. These results suggest complex, seasonally and hormonally mediated behavior in Eulemur flavifrons.


Assuntos
Androstenodiona , Lemur , Agressão/fisiologia , Androgênios/metabolismo , Androstenodiona/metabolismo , Animais , Estrogênios/metabolismo , Feminino , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Lemur/fisiologia , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA