Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331418

RESUMO

Temporal lobe epilepsy (TLE) is the most common type of partial epilepsy referred for surgery due to antiepileptic drug (AED) resistance. A common molecular target for many of these drugs is the voltage-gated sodium channel (VGSC). The VGSC consists of four domains of pore-forming α-subunits and two auxiliary ß-subunits, several of which have been well studied in epileptic conditions. However, despite the ß4-subunits' role having been reported in some neurological conditions, there is little research investigating its potential significance in epilepsy. Therefore, the purpose of this work was to assess the role of SCN4ß in epilepsy by using a combination of molecular and bioinformatics approaches. We first demonstrated that there was a reduction in the relative expression of SCN4B in the drug-resistant TLE patients compared to non-epileptic control specimens, both at the mRNA and protein levels. By analyzing a co-expression network in the neighborhood of SCN4B we then discovered a linkage between the expression of this gene and K+ channels activated by Ca2+, or K+ two-pore domain channels. Our approach also inferred several potential effector functions linked to variation in the expression of SCN4B. These observations support the hypothesis that SCN4B is a key factor in AED-resistant TLE, which could help direct both the drug selection of TLE treatments and the development of future AEDs.


Assuntos
Resistência a Medicamentos/genética , Epilepsia do Lobo Temporal/etiologia , Epilepsia do Lobo Temporal/metabolismo , Regulação da Expressão Gênica , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/genética , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Biologia Computacional/métodos , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/fisiopatologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Transcrição Gênica
2.
Neuropharmacology ; 136(Pt A): 117-128, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782512

RESUMO

This study investigates GABAB protein expression and mRNA levels in three types of specimens. Two types of specimens from patients with temporal lobe epilepsy (TLE), secondary to hippocampal sclerosis, sclerotic hippocampal samples (TLE-HS), and tissue from the structurally preserved non-spiking ipsilateral superior temporal gyrus (TLE-STG) removed from the same patient during epilepsy surgery; and third specimen is hippocampal tissue from individuals with no history of epilepsy (post-mortem controls, PMC). mRNA expression of GABAB subunits was quantified in TLE-HS, TLE-STG and PMC specimens by qRT-PCR. Qualitative and quantitative Western blot (WB) and immunohistochemistry techniques were employed to quantify and localize GABAB proteins subunits. qRT-PCR data demonstrated an overall decrease of both GABAB1 isoforms in TLE-HS compared to TLE-STG. These results were mirrored by the WB findings. GABAB2 mRNA and protein were significantly reduced in TLE-HS samples compared to TLE-STG; however they appeared to be upregulated in TLE-HS compared to the PMC samples. Immunohistochemistry (IHC) showed that GABAB proteins were widely distributed in PMC and TLE-HS hippocampal sections with regional differences in the intensity of the signal. The higher expression of mature GABAB protein in TLE-HS than PMC is in agreement with previous studies. However, these findings could be due to post-mortem changes in PMC specimens. The TLE-STG samples examined here represent a better 'control' tissue compared to TLE-HS samples characterised by lower than expected GABAB expression. This interpretation provides a better explanation for previous functional studies suggesting reduced inhibition in TLE-HS tissue due to attenuated GABAB currents. This article is part of the "Special Issue Dedicated to Norman G. Bowery".


Assuntos
Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/metabolismo , Receptores de GABA-B/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Regulação da Expressão Gênica , Hipocampo/patologia , Hipocampo/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Esclerose/metabolismo , Esclerose/patologia , Esclerose/cirurgia , Adulto Jovem
3.
Eur J Neurosci ; 46(5): 2121-2132, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28715131

RESUMO

Epilepsies are common disorders of the central nervous system (CNS), affecting up to 2% of the global population. Pharmaco-resistance is a major clinical challenge affecting about 30% of temporal lobe epilepsy (TLE) patients. Water homeostasis has been shown crucial for regulation of neuronal excitability. The control of water movement is achieved through a family of small integral membrane channel proteins called aquaporins (AQPs). Despite the fact that changes in water homeostasis occur in sclerotic hippocampi of people with TLE, the expression of AQPs in the epileptic brain is not fully characterised. This study uses microarray and ELISA methods to analyse the mRNA and protein expression of the human cerebral AQPs in sclerotic hippocampi (TLE-HS) and adjacent neocortex tissue (TLE-NC) of TLE patients. The expression of AQP1 and AQP4 transcripts was significantly increased, while that of the AQP9 transcript was significantly reduced in TLE-HS compared to TLE-NC. AQP4 protein expression was also increased while expression of AQP1 protein remained unchanged, and AQP9 was undetected. Microarray data analysis identified 3333 differentially regulated genes and suggested the involvement of the MAPK signalling pathway in TLE pathogenesis. Proteome array data validated the translational profile for 26 genes and within the MAPK pathway (e.g. p38, JNK) that were identified as differentially expressed from microarray analysis. ELISA data showed that p38 and JNK inhibitors decrease AQP4 protein levels in cultured human primary cortical astrocytes. Elucidating the mechanism of selective regulation of different AQPs and associated regulatory proteins may provide a new therapeutic approach to epilepsy treatment.


Assuntos
Aquaporinas/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases , Neocórtex/metabolismo , Transcriptoma , Adulto , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Epilepsia do Lobo Temporal/cirurgia , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Proteoma , RNA Mensageiro/metabolismo , Esclerose/metabolismo , Esclerose/cirurgia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA