Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS One ; 18(11): e0293290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37930969

RESUMO

Leishmaniasis is a vector-borne parasitic infection caused by the infective bite of female Phlebotomine sandflies. Treatment of leishmaniasis by conventional synthetic compounds is met by challenges pertaining to adverse effects which call for the discovery of newer anti-leishmanial molecules. This study was performed to evaluate the effect and modes of action of a sesquiterpene alcoholic molecule Farnesol on Leishmania major, the causative agent of Zoonotic CL. The cytotoxic effect of Farnesol against L.major promastigotes, amastigotes and macrophages was assessed by MTT test and counting. The IC50 on promastigotes by Farnesol on L.major was also evaluated by flow cytometry. In the findings, promastigotes were reduced at 167µM. The mean numbers of L.major amastigotes in macrophages were significantly decreased on exposure to Farnesol at 172µM. In addition, Farnesol induced significant apoptosis dose-dependent on L.major promastigotes. In silico protein-ligand_binding analyses indicated the effect of Farnesol in perturbation of the ergosterol synthesis pathway of Leishmania with attributes suggesting inhibition of Lanosterol-α-demethylase, the terminal enzyme of ergosterol synthesis machinery. Findings from flow cytometry reveal the role of Farnesol in apoptosis-induced killing in promastigotes. Farnesol was effective at very lower concentrations when compared to Paromomycin. Further studies are crucial to evaluate the therapeutic potential of Farnesol alone or in combination with other conventional drugs in animal models.


Assuntos
Anti-Infecciosos , Antiprotozoários , Leishmania major , Leishmaniose , Animais , Feminino , Antiparasitários/farmacologia , Farneseno Álcool/farmacologia , Anti-Infecciosos/farmacologia , Leishmaniose/tratamento farmacológico , Ergosterol/farmacologia , Antiprotozoários/farmacologia
2.
Bioinform Biol Insights ; 17: 11779322231171777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533429

RESUMO

NSP16 is one of the structural proteins of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) necessary for its entrance to the host cells. It exhibits 2'O-methyl-transferase (2'O-MTase) activity of NSP16 using methyl group from S-adenosyl methionine (SAM) by methylating the 5-end of virally encoded mRNAs and shields viral RNA, and also controls its replication as well as infection. In the present study, we used in silico approaches of drug repurposing to target and inhibit the SAM binding site in NSP16 using Food and Drug Administration (FDA)-approved small molecules set from Drug Bank database. Among the 2 456 FDA-approved molecules, framycetin, paromomycin, and amikacin were found to be significant binders against the SAM binding cryptic pocket of NSP16 with docking score of -13.708, -14.997 and -15.841 kcal/mol, respectively. Classical molecular dynamics (MD) simulation and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA)-based binding free energy calculation depicted that all these three framycetin, paromomycin, and amikacin might be promising therapeutic leads towards SARS-CoV-2 infections via host immune escape inhibition pathway.

3.
Sci Rep ; 13(1): 9337, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291166

RESUMO

Protein-protein interactions (PPIs) play a critical role in all biological processes. Menin is tumor suppressor protein, mutated in multiple endocrine neoplasia type 1 syndrome and has been shown to interact with multiple transcription factors including (RPA2) subunit of replication protein A (RPA). RPA2, heterotrimeric protein required for DNA repair, recombination and replication. However, it's still remains unclear the specific amino acid residues that have been involved in Menin-RPA2 interaction. Thus, accurately predicting the specific amino acid involved in interaction and effects of MEN1 mutations on biological systems is of great interests. The experimental approaches for identifying amino acids in menin-RPA2 interactions are expensive, time-consuming, and challenging. This study leverages computational tools, free energy decomposition and configurational entropy scheme to annotate the menin-RPA2 interaction and effect on menin point mutation, thereby proposing a viable model of menin-RPA2 interaction. The menin-RPA2 interaction pattern was calculated on the basis of different 3D structures of menin and RPA2 complexes, constructed using homology modeling and docking strategy, generating three best-fit models: Model 8 (- 74.89 kJ/mol), Model 28 (- 92.04 kJ/mol) and Model 9 (- 100.4 kJ/mol). The molecular dynamic (MD) was performed for 200 ns and binding free energies and energy decomposition analysis were calculated using Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) in GROMACS. From binding free energy change, model 8 of Menin-RPA2 exhibited most negative binding energy of - 205.624 kJ/mol, followed by model 28 of Menin-RPA2 with - 177.382 kJ/mol. After S606F point mutation in Menin, increase of BFE (ΔGbind) by - 34.09 kJ/mol in Model 8 of mutant Menin-RPA2 occurs. Interestingly, we found a significant reduction of BFE (ΔGbind) and configurational entropy by - 97.54 kJ/mol and - 2618 kJ/mol in mutant model 28 as compared the o wild type. Collectively, this is the first study to highlight the configurational entropy of protein-protein interactions thereby strengthening the prediction of two significant important interaction sites in menin for the binding of RPA2. These predicted sites could be vulnerable for structural alternation in terms of binding free energy and configurational entropy after missense mutation in menin.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Mutação Puntual , Humanos , Mutação , Fatores de Transcrição/genética , Sítios de Ligação , Aminoácidos/genética , Proteína de Replicação A/genética
4.
J Biomol Struct Dyn ; 41(11): 4981-4992, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35604071

RESUMO

Epilepsy, a moderate to chronic neuropathological condition, is induced by the acute blockage of synaptic and voltage-gated inhibitory conduction or through the activation of synaptic and voltage-gated excitatory conduction. The regulation of long-term potentiation (LTP) is important in the regulation of epileptic events, and its activity is linked to specific protein kinases. The PKC-γ subtype is a vaguely explored therapeutic target for neurological disorders, but in selected studies, it is proven to be a critical intermediate protein in LTP. This study utilized computational modelling approaches including receptor-based docking, QSAR followed by explicit binding score assessment method MM/GBSA, MM/PBSA (EDA) and MTD simulation-based FES iteration. This was performed to virtually screen the small molecule libraries, which comprised about 2.79 lacs compounds against the Ca2+-binding site of the PKC-γ-C2 regulatory domain. The screened molecules LIG-41 ([4-Oxo-4-(4-phenylmethoxyanilino) butyl] azanium) and LIG-16 (Emixustat) exhibit overall optimal attributes in the above-mentioned parameters. The two leads are expected to inhibit the Ca2+-mediated PKC-γ activity.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Sítios de Ligação , Bibliotecas de Moléculas Pequenas/química , Simulação de Acoplamento Molecular
5.
PLoS One ; 17(7): e0268139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877665

RESUMO

Metal-dependent histone deacetylases (HDACs) are essential epigenetic regulators; their molecular and pharmacological roles in medically critical diseases such as neuropsychiatric disorders, neurodegeneration, and cancer are being studied globally. HDAC2's differential expression in the central nervous system makes it an appealing therapeutic target for chronic neurological diseases like autism spectrum disorder. In this study, we identified H3R inhibitor molecules that are computationally effective at binding to the HDAC2 metal-coordinated binding site. The study highlights the importance of pitolisant in screening the potential H3R inhibitors by using a hybrid workflow of ligand and receptor-based drug discovery. The screened lead compounds with PubChem SIDs 103179850, 103185945, and 103362074 show viable binding with HDAC2 in silico. The importance of ligand contacts with the Zn2+ ion in the HDAC2 catalytic site is also discussed and investigated for a significant role in enzyme inhibition. The proposed H3R inhibitors 103179850, 103185945, and 103362074 are estimated as dual-active molecules to block the HDAC2-mediated deacetylation of the EAAT2 gene (SLC1A2) and H3R-mediated synaptic transmission irregularity and are, therefore, open for experimental validation.


Assuntos
Transtorno do Espectro Autista , Histona Desacetilase 2 , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ligantes , Transmissão Sináptica
6.
Expert Rev Anti Infect Ther ; 20(3): 383-390, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34633277

RESUMO

INTRODUCTION: COVID-19, a dreadful pandemic that has impacted human life like no other pathogenic invasion, has claimed the lives of over 100 million people. The need for effective treatment strategies is still a subject of intense research considering the rapidly evolving genome and continental diversity. Indomethacin is administered mostly as co-treatment for affected patients as a non-steroidal anti-inflammatory drug (NSAID). However, the underlying mechanism of action is unresolved. This study explores the basal mechanism of indomethacin and potency in alleviating the damage caused by SARS-CoV-2 and discusses the experimental and clinical efficacy in recent studies. AREAS COVERED: The literature search and system biology-based network formation were employed to describe the potent effects and risks associated with indomethacin in in-vitro, in-vivo, and clinical studies. This study also highlights the plausible mechanism of antiviral action of indomethacin with its apparent viral protein targets. The SARS-CoV-2 protein, the interacting host proteins, and the effect of indomethacin on this interactome as a standalone treatment or as part of a co-therapy strategy are particularly emphasized using network modeling. EXPERT OPINION: Indomethacin has demonstrated excellent clinical endpoint characteristics in several studies, and we recommend that it be utilized in the treatment of mild-to-moderate COVID patients.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Interações Hospedeiro-Patógeno , Indometacina , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Indometacina/farmacologia , Indometacina/uso terapêutico
7.
J Biomol Struct Dyn ; 40(19): 8894-8904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33998950

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is caused by newly discovered severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). One of the striking targets amongst all the proteins in coronavirus is the main protease (Mpro), as it plays vital biological roles in replication and maturation of the virus, and hence the potential target. The aim of this study is to repurpose the Food and Drug Administration (FDA) approved molecules via computer-aided drug designing against Mpro (PDB ID: 6Y2F) of SARS CoV-2 due to its high x-ray resolution of 1.95 Å as compared to other published Mprostructures. High Through Virtual Screening (HTVS) of 2456 FDA approved drugs using structure-based docking were analyzed. Molecular Dynamics simulations were performed to check the overall structural stability (RMSD), Cα fluctuations (RMSF) and protein-ligand interactions. Further, trajectory analysis was performed to assess the binding quality by exploiting the protein-residue motion cross correlation (DCCM) and binding free energy (MM/GBSA). Tenofovir, an antiretroviral for HIV-proteases and Terlipressin, a vasoconstrictor show stable RMSD, RMSF, better MM/GBSA with good cross correlation as compared to the Apo and O6K. Moreover, the results show concurrence with Nelfinavir, Lopinavir and Ritonavir which have shown significant inhibition in in vitro studies. Therefore, we conclude that Tenofovir and Terlipresssin might also show protease inhibition but are still open to clinical validation in case of SARS-CoV 2 treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , SARS-CoV-2 , Protease de HIV , Tenofovir , Peptídeo Hidrolases , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia
8.
J Biomol Struct Dyn ; 40(24): 13912-13924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34751101

RESUMO

Coronavirus 2019 is a transmissible disease and has caused havoc throughout the world. The present study identifies the novel potential antiviral inhibitors against the nucleocapsid C-terminal domain that aids in RNA-binding and replication. A total of 485,629 compounds were screened, and MD was performed. The trajectory analysis (DCCM & PCA), structural integrity, and degree of compaction depicted the protein-ligand complex stability (PDB-PISA and Rgyr). Results obtained from screening shortlists 13 compounds possessing high Docking score. Further, seven compounds had a permissible RMSD limit (3 Å), with robust RMSF. Post-MD analysis of the top two compounds (204 and 502), DCCM & PCA analysis show a positive atomic displacements correlation among residues of active sites-dimer (Chain A and Chain B) & residual clustering. The ΔGint of RNA-bound (-83.5 kcal/mol) and drug-bound N-CTD-204 (-40.8 kcal/mol) and 502(-39.7 kcal/mol) as compared to Apo (-35.95 kcal/mol) suggests stabilization of protein, with less RNA-binding possibility. The Rgyr values depict the loss of compactness on RNA-binding when compared to the drug-bound N-CTD complex. Further, overlapping the protein complexes (0 ns and 100 ns) display significant changes in RMSD of the protein (204-2.07 Å and 502-1.89 Å) as compared to the Apo (1.72 Å) and RNA-bound form (1.76 Å), suggesting strong interaction for compound 204 as compared to 502. ADMET profiling indicates that these compounds can be used for further experiments (in vitro and pre-clinical). Compound 204 could be a promising candidate for targeting the N-protein-RNA assembly and viral replication.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave , Humanos , Simulação por Computador , Antivirais/farmacologia , Polímeros , RNA , SARS-CoV-2 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
9.
Indian J Pharmacol ; 54(6): 431-442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36722555

RESUMO

INTRODUCTION: Binding of linoleic acid (LA) to the spike trimer stabilizes it in closed conformation hindering its binding to angiotensin-converting enzyme-2, thus decreasing infectivity. In the current study, we tend to repurpose Food and Drug Administration-approved drugs as binder to the LA binding pocket in wild and double mutant spike protein. MATERIALS AND METHODS: Approved drugs from DrugBank database (n = 2456) were prepared using Ligprep module of Schrodinger. Crystal structure of LA bound to spike trimer was retrieved (PDB: 6ZB4) and prepared using protein preparation wizard and grid was generated. A virtual screening was performed. With the help of molecular dynamics (MD) studies interaction profile of screened drugs were further evaluated. The selected hits were further evaluated for binding to the double mutant form of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). RESULTS AND DISCUSSION: Following virtual screening, a total of 26 molecules were shortlisted, which were further evaluated using 1ns MD simulation study. Four ligands showing better root mean square deviation (RMSD), RMSD to LA with interaction profile similar to LA were further evaluated using 100 ns MD simulation studies. A total of 2 hits were identified, which performed better than LA (selexipag and pralatrexate). Both these ligands were also found to bind to LA binding site of the double mutant form (E484Q and L452R); however, the binding affinity of pralatrexate was found to be better. CONCLUSION: We have identified 2 ligands (selexipag and pralatrexate) as possible stable binders to the LA binding site in spike trimer (wild and mutant form). Among them, pralatrexate has shown in vitro activity against SARS-CoV-2, validating our study results.


Assuntos
Antivirais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Sítios de Ligação , Ligantes , Ácido Linoleico , Simulação de Dinâmica Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Antivirais/química , Antivirais/farmacologia
10.
Comput Biol Med ; 134: 104495, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022485

RESUMO

The advent of SARS-CoV-2 has become a universal health issue with no appropriate cure available to date. The coronavirus nucleocapsid (N) protein combines viral genomic RNA into a ribonucleoprotein and protects the viral genome from the host's nucleases. Structurally, the N protein comprises two independent domains: the N-terminal domain (NTD) for RNA-binding and C-terminal domain (CTD) involved in RNA-binding, protein dimerization, and nucleocapsid stabilization. The present study explains the structural aspects associated with the involvement of nucleocapsid C-terminal domain in the subunit assembly that helps the RNA binding and further stabilizing the virus assembly by protecting RNA from the hosts exonucleases degradation. The molecular dynamics (MD) simulations of the N-CTD and RNA complex suggests two active sites (site I: a monomer) and (site II: a dimer) with structural stability (RMSD: ~2 Å), Cα fluctuations (RMSF: ~3 Å) and strong protein-ligand interactions were estimated through the SiteMap module of Schrodinger. Virtual screening of 2456 FDA-approved drugs using structure-based docking identified top two leads distinctively against Site-I (monomer): Ceftaroline fosamil (MM-GBSA = -47.12 kcal/mol) and Cefoperazone (-45.84 kcal/mol); and against Site-II (dimer): Boceprevir, (an antiviral protease inhibitor, -106.78 kcal/mol) and Ceftaroline fosamil (-99.55 kcal/mol). The DCCM and PCA of drugs Ceftaroline fosamil (PC1+PC2 = 71.9%) and Boceprevir (PC1 +PC2 = 61.6%) show significant correlated residue motions which suggests highly induced conformational changes in the N-CTD dimer. Therefore, we propose N-CTD as a druggable target with two active binding sites (monomer and dimer) involved in specific RNA binding and stability. The RNA binding site with Ceftaroline fosamil binding can prevent viral assembly and can act as an antiviral for coronavirus.


Assuntos
COVID-19 , Preparações Farmacêuticas , Domínio Catalítico , Humanos , RNA Viral , SARS-CoV-2
11.
Pharmacol Rep ; 73(3): 736-749, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33389725

RESUMO

INTRODUCTION: COVID-19 cases are on surge; however, there is no efficient treatment or vaccine that can be used for its management. Numerous clinical trials are being reviewed for use of different drugs, biologics, and vaccines in COVID-19. A much empirical approach will be to repurpose existing drugs for which pharmacokinetic and safety data are available, because this will facilitate the process of drug development. The article discusses the evidence available for the use of Ivermectin, an anti-parasitic drug with antiviral properties, in COVID-19. METHODS: A rational review of the drugs was carried out utilizing their clinically significant attributes. A more thorough understanding was met by virtual embodiment of the drug structure and realizable viral targets using artificial intelligence (AI)-based and molecular dynamics (MD)-simulation-based study. CONCLUSION: Certain studies have highlighted the significance of ivermectin in COVID-19; however, it requires evidences from more Randomised Controlled Trials (RCTs) and dose- response studies to support its use. In silico-based analysis of ivermectin's molecular interaction specificity using AI and classical mechanics simulation-based methods indicates positive interaction of ivermectin with viral protein targets, which is leading for SARS-CoV 2 N-protein NTD (nucleocapsid protein N-terminal domain).


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Animais , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Antivirais/farmacologia , Humanos , Simulação de Dinâmica Molecular
12.
J Biomol Struct Dyn ; 39(8): 2724-2732, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32266867

RESUMO

The N terminal domain (NTD) of Nucleocapsid protein (N protein) of coronavirus (CoV) binds to the viral (+) sense RNA and results in CoV ribonucleoprotien (CoV RNP) complex, essential for the virus replication. In this study, the RNA-binding N terminal domain (NTD) of the N protein was targeted for the identification of possible inhibitors of RNA binding. Two NTD structures of N proteins were selected (2OFZ and 1SSK, 92% homology) for virtual screening of 56,079 compounds from Asinex and Maybridge library to identify top 15 hits for each of the targets based on 'docking score'. These top-hits were further screened for MM-GBSA binding free energy, pharmacokinetic properties (QikProp) and drug-likeness (SwissADME) and subjected to molecular dynamics (MD) studies. Two suitable binders (ZINC00003118440 and ZINC0000146942) against the target 2OFZ were identified. ZINC00003118440 is a theophylline derivative under the drug class 'bronchodilators' and further screening with approved bronchodilators was also studied to identify their ability to bind to the RNA binding region on the N protein. The other identified top hit is ZINC0000146942, which is a 3,4dihydropyrimidone class molecule. Hence this study suggests two important class of compounds, theophylline and pyrimidone derivaties as possible inhibitors of RNA binding to the N terminal domain of N protein of coronavirus, thus opening new avenues for in vitro validations. Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular , Proteínas do Nucleocapsídeo , RNA
13.
Am J Ophthalmol ; 223: 275-285, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32888903

RESUMO

PURPOSE: To evaluate safety and efficacy of topical cysteamine ophthalmic solution for corneal cystinosis. METHODS: Seven databases were searched (PubMed, OVID, EMBASE, Web of Science, Cochrane Central, Google Scholar, and ClinicalTrials.gov) for relevant studies, using appropriate keywords. Comparative observational studies and randomized controlled trials comparing cysteamine with control or other formulations for treatment of corneal or ophthalmic cystinosis were included. Outcome measurements were improvement or response to therapy, change in corneal cystine crystal score (CCCS), in vivo confocal microscopy score (IVCM), cystine crystal depth, contrast sensitivity (CS), photophobia score, and safety. DESIGN: Systematic review and meta-analysis. RESULTS: Seven studies were included. Compared to placebo and control, the cysteamine arm was better in terms of improvements and responses to therapy (2 studies showed a risk ratio [RR] of 16; 95% confidence interval [CI]: 2.30-111.37) and crystal density score (1 study showed a mean difference [MD] of -0.80; 95% CI: -1.56 to -0.04). No significant differences were observed in terms of improvement in CS (1 study showed an RR of 7.00; 95% CI: 0.47-103.27). Compared to cystamine, cysteamine showed benefits in terms of crystal density score (MD -0.94; 95% CI: -1.64 to -0.24). Compared to a newer formulation, the standard formulation (cysteamine [Cystaran]; 0.55% cysteamine hydrochloride + benzalkonium chloride 0.01%) performed better in terms of decreasing CCCS. Another newer, viscous formulation, Cystadrops, performed better than the standard formulation in terms of change in CCCS, IVCM score, corneal crystal depth, and photophobia score; however, local adverse effects and blurring were higher in the group receiving Cystadrops. CONCLUSIONS: Conventional cysteamine (0.1% to 0.3%) performed better than placebo (control) in terms of response to therapy. In terms of decreasing corneal cystine density, cysteamine (0.55%) was better than cystamine (0.55%), and the viscous Cystadrops (0.55%) was better than the standard formulation (0.1%).


Assuntos
Cisteamina/administração & dosagem , Cistinose/tratamento farmacológico , Acuidade Visual , Doenças da Córnea/tratamento farmacológico , Eliminadores de Cistina/administração & dosagem , Humanos , Soluções Oftálmicas/administração & dosagem
14.
J Biomol Struct Dyn ; 39(14): 5314-5326, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32673149

RESUMO

NF-kB plays a major role in the aetiopathogenesis of inflammatory-colitis. In this study, we evaluated the efficacy of green tea and its polyphenols and their nanoformulation in Tri-Nitro Benzene Sulfonic acid (TNBS) induced colitis in in-vivo system (Rat) and the involvement of non-canonical and canonical NF-kB pathway in green tea mediated protection (in-silico platform). We used the Wister rat model of TNBS-induced colitis. Rats were grouped into eleven groups (six animals each) and administered vehicle (ethanol), TNBS, Epicatechin (EC), Epigallocatechin (EGC), Epicatechin-gallate (ECG), Epigallocatechin-gallate (EGCG), sulfasalazine, green tea, EGCG + sulfasalazine, nano-EGCG and nano-EGCG + sulfasalazine for 14 days after induction of colitis. Colonic tissue was evaluated for the level of malondialdehyde, myeloperoxidase activity, catalase, reduced glutathione, glutathione peroxidase, IL-6, TNF-α, IL-1ß, NF-κB and morphological and histopathological evidence of damage. In the in-silico part, molecular docking and dynamic simulation study of EGCG was done against different targets in NF-kB for detailed evaluation of the role of non-canonical and canonical NF-KB pathway. In our study, EGCG reduced colonic inflammation, markers of oxidative stress, TNF-α, NF-κB, IL-1ß and IL-6. Nano-EGCG + sulfasalazine was more efficacious when compared to EGCG + sulfasalazine. In molecular docking and molecular dynamic simulation studies, EGCG showed a good binding profile to the inhibitor binding sites of IKK-beta, IKK-alpha and NIK. Thus, it can be concluded that EGCG showed protective action in experimental colitis acting through both non-canonical and canonical NF-kB pathway. Nano-EGCG + sulfasalazine combination showed better protection than nano-EGCG alone. Communicated by Ramaswamy H. Sarma.


Assuntos
Colite , NF-kappa B , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Simulação de Acoplamento Molecular , Polifenóis/farmacologia , Ratos , Ratos Wistar , Chá
15.
Indian J Pharmacol ; 52(4): 313-323, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33078733

RESUMO

BACKGROUND: Being protease inhibitors and owing to their efficacy in SARS-CoV, lopinavir + ritonavir (L/R) combination is being used in the management of COVID-19. In this systematic review and meta-analysis, we have evaluated the comparative safety and efficacy of L/R combination. MATERIALS AND METHODS: Comparative, observational studies and controlled clinical trials comparing L/R combination to standard of care (SOC)/control or any other antiviral agent/combinations were included. A total of 10 databases were searched to identify 13 studies that fulfilled the predefined inclusion/exclusion criteria. RESULTS: No discernible beneficial effect was seen in the L/R group in comparison to SOC/control in terms of "progression to more severe state" (4 studies, odds ratio [OR]: 1.446 [0.722-2.895]), "mortality" (3 studies, OR: 1.208 [0.563-2.592]), and "virological cure on days 7-10" (3 studies, OR: 0.777 [0.371-1.630]), while the L/R combination arm performed better than the SOC/control arm in terms of "duration of hospital stay" (3 studies, mean difference (MD): -1.466 [-2.403 to - 0.529]) and "time to virological cure" (3 studies, MD: -3.272 [-6.090 to - 0.454]). No difference in efficacy was found between L/R versus hydroxychloroquine (HCQ) and L/R versus arbidol. However, in a single randomized controlled trail (open label), chloroquine (CQ) performed better than L/R. The combination L/R with arbidol may be beneficial (in terms of virological clearance and radiological improvement); however, we need more dedicated studies. Single studies report efficacy of L/R + interferon (IFN, either alpha or 1-beta) combination. We need more studies to delineate the proper effect size. Regarding adverse effects, except occurrence of diarrhea (higher in the L/R group), safety was comparable to SOC. CONCLUSION: In our study, no difference was seen between the L/R combination and the SOC arm in terms of "progression to more severe state," "mortality," and virological cure on days 7-10;" however, some benefits in terms of "duration of hospital stay" and "time to virological cure" were seen. No significant difference in efficacy was seen when L/R was compared to arbidol and HCQ monotherapy. Except for the occurrence of diarrhea, which was higher in the L/R group, safety profile of L/R is comparable to SOC. Compared to L/R combination, CQ, L/R + arbidol, L/R + IFN-α, and L/R + IFN-1ß showed better efficacy, but the external validity of these findings is limited by limited number of studies (1 study each).


Assuntos
Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Lopinavir/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Ritonavir/uso terapêutico , COVID-19 , Combinação de Medicamentos , Humanos , Resultados Negativos , Pandemias , Resultado do Tratamento , Tratamento Farmacológico da COVID-19
16.
J Mol Graph Model ; 101: 107716, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866780

RESUMO

BACKGROUND: The receptor binding domain (RBD) of spike protein S1 domain SARS-CoV-2 plays a key role in the interaction with ACE2, which leads to subsequent S2 domain mediated membrane fusion and incorporation of viral RNA into host cells. In this study we tend to repurpose already approved drugs as inhibitors of the interaction between S1-RBD and the ACE2 receptor. METHODS: 2456 approved drugs were screened against the RBD of S1 protein of SARS-CoV-2 (target PDB ID: 6M17). As the interacting surface between S1-RBD and ACE2 comprises of bigger region, the interacting surface was divided into 3 sites on the basis of interactions (site 1, 2 and 3) and a total of 5 grids were generated (site 1, site 2, site 3, site 1+site 2 and site 2+site 3). A virtual screening was performed using GLIDE implementing HTVS, SP and XP screening. The top hits (on the basis of docking score) were further screened for MM-GBSA. All the top hits were further evaluated in molecular dynamics studies. Performance of the virtual screening protocol was evaluated using enrichment studies. RESULT: and discussion: We performed 5 virtual screening against 5 grids generated. A total of 42 compounds were identified after virtual screening. These drugs were further assessed for their interaction dynamics in molecular dynamics simulation. On the basis of molecular dynamics studies, we come up with 10 molecules with favourable interaction profile, which also interacted with physiologically important residues (residues taking part in the interaction between S1-RBD and ACE2. These are antidiabetic (acarbose), vitamins (riboflavin and levomefolic acid), anti-platelet agents (cangrelor), aminoglycoside antibiotics (Kanamycin, amikacin) bronchodilator (fenoterol), immunomodulator (lamivudine), and anti-neoplastic agents (mitoxantrone and vidarabine). However, while considering the relative side chain fluctuations when compared to the S1-RBD: ACE2 complex riboflavin, fenoterol, cangrelor and vidarabine emerged out as molecules with prolonged relative stability. CONCLUSION: We identified 4 already approved drugs (riboflavin, fenoterol, cangrelor and vidarabine) as possible agents for repurposing as inhibitors of S1:ACE2 interaction. In-vitro validation of these findings are necessary for identification of a safe and effective inhibitor of S1: ACE2 mediated entry of SARS-CoV-2 into the host cell.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Peptidil Dipeptidase A/metabolismo , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptidil Dipeptidase A/química , Reprodutibilidade dos Testes , Glicoproteína da Espícula de Coronavírus/química
17.
mSystems ; 5(5)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963099

RESUMO

The membrane-anchored spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a pivotal role in directing the fusion of the virus particle mediated by the host cell receptor angiotensin-converting enzyme 2 (ACE-2). The fusion peptide region of the S protein S2 domain provides SARS-CoV-2 with the biological machinery needed for direct fusion to the host lipid membrane. In our present study, computer-aided drug design strategies were used for the identification of FDA-approved small molecules using the optimal structure of the S2 domain, which exhibits optimal interaction ratios, structural features, and energy variables, which were evaluated based on their performances in molecular docking, molecular dynamics simulations, molecular mechanics/generalized Born model and solvent accessibility binding free energy calculations of molecular dynamics trajectories, and statistical inferences. Among the 2,625 FDA-approved small molecules, chloramphenicol succinate, imipenem, and imidurea turned out to be the molecules that bound the best at the fusion peptide hydrophobic pocket. The principal interactions of the selected molecules suggest that the potential binding site at the fusion peptide region is centralized amid the Lys790, Thr791, Lys795, Asp808, and Gln872 residues.IMPORTANCE The present study provides the structural identification of the viable binding residues of the SARS-CoV-2 S2 fusion peptide region, which holds prime importance in the virus's host cell fusion and entry mechanism. The classical molecular mechanics simulations were set on values that mimic physiological standards for a good approximation of the dynamic behavior of selected drugs in biological systems. The drug molecules screened and analyzed here have relevant antiviral properties, which are reported here and which might hint toward their utilization in the coronavirus disease 2019 (COVID-19) pandemic owing to their attributes of binding to the fusion protein binding region shown in this study.

18.
Indian J Pharmacol ; 52(2): 142-149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32565603

RESUMO

Knowledge of structural details is very much essential from the drug-design perspective. In the systematic review, we systematically reviewed the structural basis of different target proteins of SARS-corona virus (CoV2) from a viral life cycle and from drug design perspective. We searched four literature (PubMed, EMBASE, NATURE, and Willey online library) databases and one structural database (RCSB.org) with appropriate keywords till April 18, and finally, 26 articles were included in the systematic review. The published literature mainly centered upon the structural details of "spike protein," "main protease/M Pro/3CL pro," "RNA-dependent RNA polymerase," and "nonstructural protein 15 Endoribonuclease" of SARS-CoV-2. However, inhibitor bound structures were very less. We need better structures elucidating the interactions between different targets and their inhibitors which will help us in understanding the atomic level importance of different amino acid residues in the functionality of the target structures. To summarize, we need structures with fine resolution, co-crystallized structures with biologically validated inhibitors, and functional characterization of different target proteins. Some other routes of entry of SARS-CoV-2 are also mentioned (e.g., CD147); however, these findings are not structurally validated. This review may pave way for better understanding of SARS-CoV-2 life cycle from structural biology perspective.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Antivirais/farmacologia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/virologia , Desenho de Fármacos , Humanos , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
19.
J Med Virol ; 92(7): 776-785, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32297988

RESUMO

Following the demonstration of the efficacy of hydroxychloroquine against severe acute respiratory syndrome coronavirus 2 in vitro, many trials started to evaluate its efficacy in clinical settings. However, no systematic review and meta-analysis have addressed the issue of the safety and efficacy of hydroxychloroquine (HCQ) in coronavirus disease 2019. We conducted a systematic review and meta-analysis with the objectives of evaluation of safety and efficacy of HCQ alone or in combination in terms of "time to clinical cure," "virological cure," "death or clinical worsening of disease," "radiological progression," and safety. RevMan was used for meta-analysis. We searched 16 literature databases out of which seven studies (n = 1358) were included in the systematic review. In terms of clinical cure, two studies reported possible benefit in "time to body temperature normalization" and one study reported less "cough days" in the HCQ arm. Treatment with HCQ resulted in less number of cases showing the radiological progression of lung disease (odds ratio [OR], 0.31, 95% confidence interval [CI], 0.11-0.9). No difference was observed in virological cure (OR, 2.37, 95% CI, 0.13-44.53), death or clinical worsening of disease (OR, 1.37, 95% CI, 1.37-21.97), and safety (OR, 2.19, 95% CI, 0.59-8.18), when compared with the control/conventional treatment. Five studies reported either the safety or efficacy of HCQ + azithromycin. Although seems safe and effective, more data are required for a definitive conclusion. HCQ seems to be promising in terms of less number of cases with radiological progression with a comparable safety profile to control/conventional treatment. We need more data to come to a definite conclusion.


Assuntos
Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Hidroxicloroquina/uso terapêutico , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Azitromicina/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/crescimento & desenvolvimento , Betacoronavirus/patogenicidade , COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/complicações , Infecções por Coronavirus/metabolismo , Quimioterapia Combinada/métodos , Humanos , Pneumonia Viral/complicações , Pneumonia Viral/metabolismo , SARS-CoV-2 , Resultado do Tratamento , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
20.
Indian J Pharmacol ; 52(1): 56-65, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32201449

RESUMO

The 2019-novel coronavirus (nCoV) is a major source of disaster in the 21th century. However, the lack of specific drugs to prevent/treat an attack is a major need at this current point of time. In this regard, we conducted a systematic review to identify major druggable targets in coronavirus (CoV). We searched PubMed and RCSB database with keywords HCoV, NCoV, corona virus, SERS-CoV, MERS-CoV, 2019-nCoV, crystal structure, X-ray crystallography structure, NMR structure, target, and drug target till Feb 3, 2020. The search identified seven major targets (spike protein, envelop protein, membrane protein, protease, nucleocapsid protein, hemagglutinin esterase, and helicase) for which drug design can be considered. There are other 16 nonstructural proteins (NSPs), which can also be considered from the drug design perspective. The major structural proteins and NSPs may serve an important role from drug design perspectives. However, the occurrence of frequent recombination events is a major deterrent factor toward the development of CoV-specific vaccines/drugs.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Desenho de Fármacos , Pneumonia Viral/tratamento farmacológico , Proteínas Virais/química , Betacoronavirus/química , COVID-19 , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio , Terapia de Alvo Molecular , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA