Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645060

RESUMO

The major gram-positive pathogen group A Streptococcus (GAS) is a model organism for studying microbial epidemics as it causes waves of infections. Since 1980, several GAS epidemics have been ascribed to the emergence of clones producing increased amounts of key virulence factors such as streptolysin O (SLO). Herein, we sought to identify mechanisms underlying our recently identified temporal clonal emergence amongst emm4 GAS, given that emergent strains did not produce augmented levels of virulence factors relative to historic isolates. Through the creation and analysis of isoallelic strains, we determined that a conserved mutation in a previously undescribed gene encoding a putative carbonic anhydrase was responsible for the defective in vitro growth observed in the emergent strains. We also identified that the emergent strains survived better inside macrophages and killed macrophages at lower rates relative to the historic strains. Via creation of isogenic mutant strains, we linked the emergent strain "survival" phenotype to the downregulation of the SLO encoding gene and upregulation of the msrAB operon which encodes proteins involved in defense against extracellular oxidative stress. Our findings are in accord with recent surveillance studies which found high ratio of mucosal (i.e., pharyngeal) relative to invasive infections amongst emm4 GAS. Inasmuch as ever-increasing virulence is unlikely to be evolutionary advantageous for a microbial pathogen, our data furthers understanding of the well described oscillating patterns of virulent GAS infections by demonstrating mechanisms by which emergent strains adapt a "survival" strategy to outcompete previously circulating isolates.

2.
JAC Antimicrob Resist ; 6(2): dlae060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601790

RESUMO

Background: Taniborbactam is a ß-lactamase inhibitor that, when combined with cefepime, may offer a potential treatment option for patients with serious and resistant Gram-negative bacterial (GNB) pathogens. Objectives: This study evaluated in vitro activity of cefepime/taniborbactam and comparator agents against GNB pathogens isolated from patients with cancer at our institution. Methods: A total of 270 GNB pathogens (2019-23) isolated from patients with cancer were tested against cefepime/taniborbactam and comparator agents commonly used for these patients. CLSI-approved broth microdilution methods were used. MIC50, MIC90, MIC range and percentage of susceptibility calculations were made using FDA breakpoints when available. Results: Cefepime/taniborbactam showed highly potent activity against tested Enterobacterales, including isolates producing ESBLs and carbapenem-resistant Enterobacterales. At a provisional breakpoint of ≤16/4 mg/L, cefepime/taniborbactam inhibited most tested species of GNB pathogens, with overall 98.9% susceptibility, which was significantly (P < 0.0001) higher than the susceptibility of the GNB isolates to all other tested comparator agents, ranging from 39.6% for cefepime to 86.3% for ceftazidime/avibactam. Conclusions: Our results showed that taniborbactam in combination with cefepime improved in vitro activity against GNB pathogens isolated from patients with cancer, including MDR Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, ESBL-producing Enterobacterales and Stenotrophomonas maltophilia isolates, with highest activity compared with all tested comparator agents, including other ß-lactam/ß-lactamase inhibitor combinations. Further studies are warranted to explore the efficacy of cefepime/taniborbactam for empirical initial treatment of GNB infections in cancer patients with high rates of febrile neutropenia requiring hospitalization.

4.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352536

RESUMO

The siderophore-cephalosporin cefiderocol(FDC) presents a promising treatment option for carbapenem-resistant (CR) P. aeruginosa (PA). FDC circumvents traditional porin and efflux mediated resistance by utilizing TonB-dependent receptors (TBDRs) to access the periplasmic space. Emerging FDC resistance has been associated with loss of function mutations within TBDR genes or the regulatory genes controlling TBDR expression. Further, difficulties with antimicrobial susceptibility testing (AST) and unexpected negative clinical treatment outcomes have prompted concerns for heteroresistance, where a single lineage isolate contains resistant subpopulations not detectable by standard AST. This study aimed to evaluate the prevalence of TBDR mutations among clinical isolates of P. aeruginosa and the phenotypic effect on FDC susceptibility and heteroresistance. We evaluated the sequence of pirR , pirS , pirA , piuA or piuD from 498 unique isolates collected before the introduction of FDC from 4 clinical sites in Portland, OR (1), Houston, TX (2), and Santiago, Chile (1). At some clinical sites, TBDR mutations were seen in up to 25% of isolates, and insertion, deletion, or frameshift mutations were predicted to impair protein function were seen in 3% of all isolates (n=15). Using population analysis profile testing, we found that P. aeruginosa with major TBDR mutations were enriched for a heteroresistant phenotype and undergo a shift in the susceptibility distribution of the population as compared to susceptible strains with wild type TBDR genes. Our results indicate that mutations in TBDR genes predate the clinical introduction of FDC, and these mutations may predispose to the emergence of FDC resistance.

5.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38407244

RESUMO

Despite the notable clinical impact, recent molecular epidemiology regarding third-generation-cephalosporin-resistant (3GC-R) Klebsiella pneumoniae in the USA remains limited. We performed whole-genome sequencing of 3GC-R K. pneumoniae bacteraemia isolates collected from March 2016 to May 2022 at a tertiary care cancer centre in Houston, TX, USA, using Illumina and Oxford Nanopore Technologies platforms. A comprehensive comparative genomic analysis was performed to dissect population structure, transmission dynamics and pan-genomic signatures of our 3GC-R K. pneumoniae population. Of the 178 3GC-R K. pneumoniae bacteraemias that occurred during our study time frame, we were able to analyse 153 (86 %) bacteraemia isolates, 126 initial and 27 recurrent isolates. While isolates belonging to the widely prevalent clonal group (CG) 258 were rarely observed, the predominant CG, 307, accounted for 37 (29 %) index isolates and displayed a significant correlation (Pearson correlation test P value=0.03) with the annual frequency of 3GC-R K. pneumoniae bacteraemia. Interestingly, only 11 % (4/37) of CG307 isolates belonged to the commonly detected 'Texas-specific' clade that has been observed in previous Texas-based K. pneumoniae antimicrobial-resistance surveillance studies. We identified nearly half of our CG307 isolates (n=18) belonged to a novel, monophyletic CG307 sub-clade characterized by the chromosomally encoded bla SHV-205 and unique accessory genome content. This CG307 sub-clade was detected in various regions of the USA, with genome sequences from 24 additional strains becoming recently available in the National Center for Biotechnology Information (NCBI) SRA database. Collectively, this study underscores the emergence and dissemination of a distinct CG307 sub-clade that is a prevalent cause of 3GC-R K. pneumoniae bacteraemia among cancer patients seen in Houston, TX, and has recently been isolated throughout the USA.


Assuntos
Bacteriemia , Klebsiella pneumoniae , Humanos , Estados Unidos/epidemiologia , Klebsiella pneumoniae/genética , Bacteriemia/epidemiologia , Hibridização Genômica Comparativa , Bases de Dados Factuais , Cefalosporinas
6.
Antimicrob Agents Chemother ; 68(3): e0106923, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289081

RESUMO

Daptomycin (DAP) is often used as a first-line therapy to treat vancomycin-resistant Enterococcus faecium infections, but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP minimum inhibitory concentrations (MICs) have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system, and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ. In Enterococcus faecalis, LiaX is surface-exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis, LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium. Here, we found that liaX is essential in E. faecium with an activated LiaFSR system. Unlike E. faecalis, E. faecium LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX enzyme-linked immunosorbent assay (ELISA). We then assessed 86 clinical E. faecium bloodstream isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-resistant clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-susceptible isolates by standard MIC determination also had elevated LiaX ELISAs compared to a well-characterized DAP-susceptible strain. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many E. faecium isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.


Assuntos
Daptomicina , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Humanos , Daptomicina/farmacologia , Daptomicina/uso terapêutico , Filogenia , Reprodutibilidade dos Testes , Farmacorresistência Bacteriana/genética , Antibacterianos/uso terapêutico , Membrana Celular , Biomarcadores/metabolismo , Testes de Sensibilidade Microbiana , Enterococcus faecalis , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/metabolismo
7.
mBio ; 15(2): e0287423, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38179965

RESUMO

ß-Lactamases can accumulate stepwise mutations that increase their resistance profiles to the latest ß-lactam agents. CMY-185 is a CMY-2-like ß-lactamase and was identified in an Escherichia coli clinical strain isolated from a patient who underwent treatment with ceftazidime-avibactam. CMY-185, possessing four amino acid substitutions of A114E, Q120K, V211S, and N346Y relative to CMY-2, confers high-level ceftazidime-avibactam resistance, and accumulation of the substitutions incrementally enhances the level of resistance to this agent. However, the functional role of each substitution and their interplay in enabling ceftazidime-avibactam resistance remains unknown. Through biochemical and structural analysis, we present the molecular basis for the enhanced ceftazidime hydrolysis and impaired avibactam inhibition conferred by CMY-185. The substituted Y346 residue is a major driver of the functional evolution as it rejects primary avibactam binding due to the steric hindrance and augments oxyimino-cephalosporin hydrolysis through a drastic structural change, rotating the side chain of Y346 and then disrupting the H-10 helix structure. The other substituted residues E114 and K120 incrementally contribute to rejection of avibactam inhibition, while S211 stimulates the turnover rate of the oxyimino-cephalosporin hydrolysis. These findings indicate that the N346Y substitution is capable of simultaneously expanding the spectrum of activity against some of the latest ß-lactam agents with altered bulky side chains and rejecting the binding of ß-lactamase inhibitors. However, substitution of additional residues may be required for CMY enzymes to achieve enhanced affinity or turnover rate of the ß-lactam agents leading to clinically relevant levels of resistance.IMPORTANCECeftazidime-avibactam has a broad spectrum of activity against multidrug-resistant Gram-negative bacteria including carbapenem-resistant Enterobacterales including strains with or without production of serine carbapenemases. After its launch, emergence of ceftazidime-avibactam-resistant strains that produce mutated ß-lactamases capable of efficiently hydrolyzing ceftazidime or impairing avibactam inhibition are increasingly reported. Furthermore, cross-resistance towards cefiderocol, the latest cephalosporin in clinical use, has been observed in some instances. Here, we clearly demonstrate the functional role of the substituted residues in CMY-185, a four amino-acid variant of CMY-2 identified in a patient treated with ceftazidime-avibactam, for high-level resistance to this agent and low-level resistance to cefiderocol. These findings provide structural insights into how ß-lactamases may incrementally alter their structures to escape multiple advanced ß-lactam agents.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Humanos , Ceftazidima/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/farmacologia , Combinação de Medicamentos , Cefiderocol , beta-Lactamases/metabolismo , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana
8.
Microbiol Spectr ; 11(6): e0222123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800937

RESUMO

IMPORTANCE: The increased feasibility of whole-genome sequencing has generated significant interest in using such molecular diagnostic approaches to characterize difficult-to-treat, antimicrobial-resistant (AMR) infections. Nevertheless, there are current limitations in the accurate prediction of AMR phenotypes based on existing AMR gene database approaches, which primarily correlate a phenotype with the presence/absence of a single AMR gene. Our study utilized a large cohort of cephalosporin-susceptible Escherichia coli bacteremia samples to determine how increasing the dosage of narrow-spectrum ß-lactamase-encoding genes in conjunction with other diverse ß-lactam/ß-lactamase inhibitor (BL/BLI) genetic determinants contributes to progressively more severe BL/BLI phenotypes. We were able to characterize the complexity of the genetic mechanisms underlying progressive BL/BLI resistance including the critical role of ß-lactamase encoding gene amplification. For the diverse array of AMR phenotypes with complex mechanisms involving multiple genomic factors, our study provides an example of how composite risk scores may improve understanding of AMR genotype/phenotype correlations.


Assuntos
Infecções por Escherichia coli , Inibidores de beta-Lactamases , Humanos , Inibidores de beta-Lactamases/farmacologia , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Lactamas , Infecções por Escherichia coli/tratamento farmacológico , Fenótipo , beta-Lactamas/farmacologia , Monobactamas , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
9.
J Antimicrob Chemother ; 78(10): 2442-2450, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37574665

RESUMO

OBJECTIVES: To characterize a blaCMY variant associated with ceftazidime/avibactam resistance from a serially collected Escherichia coli isolate. METHODS: A patient with an intra-abdominal infection due to recurrent E. coli was treated with ceftazidime/avibactam. On Day 48 of ceftazidime/avibactam therapy, E. coli with a ceftazidime/avibactam MIC of >256 mg/L was identified from abdominal drainage. Illumina and Oxford Nanopore Technologies WGS was performed on serial isolates to identify potential resistance mechanisms. Site-directed mutants of CMY ß-lactamase were constructed to identify amino acid residues responsible for ceftazidime/avibactam resistance. RESULTS: WGS revealed that all three isolates were E. coli ST410. The ceftazidime/avibactam-resistant strain uniquely acquired a novel CMY ß-lactamase gene, herein called blaCMY-185, harboured on an IncI-γ/K1 conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2, including A114E, Q120K, V211S and N346Y, and conferred high-level ceftazidime/avibactam resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced ceftazidime/avibactam susceptibility. However, double and triple mutants containing N346Y previously associated with ceftazidime/avibactam resistance in other AmpC enzymes, conferred ceftazidime/avibactam MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to steric hindrance between the side chain of Y346 and the sulphate group of avibactam. CONCLUSIONS: We identified ceftazidime/avibactam resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer ceftazidime/avibactam resistance.


Assuntos
Ceftazidima , Escherichia coli , Humanos , Ceftazidima/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Combinação de Medicamentos , Plasmídeos/genética , Testes de Sensibilidade Microbiana
10.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645818

RESUMO

Daptomycin (DAP) is often used as a first line therapy to treat vancomycin-resistant Enterococcus faecium (VR Efm ) infections but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP MICs have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ . In Enterococcus faecalis , LiaX is surface exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis , LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium . Here, we found that liaX is essential in E. faecium ( Efm ) with an activated LiaFSR system. Unlike E. faecalis , Efm LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX ELISA. We then assessed 86 clinical E. faecium BSI isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-R clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-S isolates by standard MIC determination had elevated LiaX ELISAs above the established cut-off. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many Efm isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.

11.
mSphere ; 8(4): e0018323, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37427953

RESUMO

Extended-spectrum cephalosporin-resistant Escherichia coli (ESC-R-Ec) is an urgent public health threat with sequence type clonal complex 131 (STc131), phylogroup B2 strains being particularly concerning as the dominant cause of ESC-R-Ec infections. To address the paucity of recent ESC-R-Ec molecular epidemiology data in the United States, we used whole-genome sequencing (WGS) to fully characterize a large cohort of invasive ESC-R-Ec at a tertiary care cancer center in Houston, Texas, collected from 2016 to 2020. During the study time frame, there were 1,154 index E. coli bloodstream infections (BSIs) of which 389 (33.7%) were ESC-R-Ec. Using time series analyses, we identified a temporal dynamic of ESC-R-Ec distinct from ESC-susceptible E. coli (ESC-S-Ec), with cases peaking in the last 6 months of the calendar year. WGS of 297 ESC-R-Ec strains revealed that while STc131 strains accounted for ~45% of total BSIs, the proportion of STc131 strains remained stable across the study time frame with infection peaks driven by genetically heterogeneous ESC-R-Ec clonal complexes. bla CTX-M variants accounted for most ß-lactamases conferring the ESC-R phenotype (89%; 220/248 index ESC-R-Ec), and amplification of bla CTX-M genes was widely detected in ESC-R-Ec strains, particularly in carbapenem non-susceptible, recurrent BSI strains. Bla CTX-M-55 was significantly enriched within phylogroup A strains, and we identified bla CTX-M-55 plasmid-to-chromosome transmission occurring across non-B2 strains. Our data provide important information regarding the current molecular epidemiology of invasive ESC-R-Ec infections at a large tertiary care cancer center and provide novel insights into the genetic basis of observed temporal variability for these clinically important pathogens. IMPORTANCE Given that E. coli is the leading cause of worldwide ESC-R Enterobacterales infections, we sought to assess the current molecular epidemiology of ESC-R-Ec using a WGS analysis of many BSIs over a 5-year period. We identified fluctuating temporal dynamics of ESC-R-Ec infections, which have also recently been identified in other geographical regions such as Israel. Our WGS data allowed us to visualize the stable nature of STc131 over the study period and demonstrate a limited but genetically diverse group of ESC-R-Ec clonal complexes are detected during infection peaks. Additionally, we provide a widespread assessment of ß-lactamase gene copy number in ESC-R-Ec infections and delineate mechanisms by which such amplifications are achieved in a diverse array of ESC-R-Ec strains. These data suggest that serious ESC-R-Ec infections are driven by a diverse array of strains in our cohort and impacted by environmental factors suggesting that community-based monitoring could inform novel preventative measures.


Assuntos
Infecções por Escherichia coli , Sepse , Humanos , Cefalosporinas/farmacologia , Escherichia coli/genética , Antibacterianos , Infecções por Escherichia coli/epidemiologia , Monobactamas , beta-Lactamases/genética
12.
J Bacteriol ; 205(6): e0011823, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37289078

RESUMO

The control of virulence two-component gene regulatory system (CovRS) is critical to the pathogenesis of many medically important streptococci. In emm1 group A streptococci (GAS), CovR directly binds the promoters of numerous GAS virulence factor-encoding genes. Elimination of CovS phosphatase activity increases CovR phosphorylation (CovR~P) levels and abrogates GAS virulence. Given the emm type-specific diversity of CovRS function, in this study we used chromatin immunoprecipitation sequencing (ChIP-seq) to define global CovR DNA occupancy in the wild-type emm3 strain MGAS10870 (medium CovR~P) and its CovS phosphatase-negative derivative 10870-CovS-T284A (high CovR~P). In the wild-type emm3 strain, 89% of the previously identified emm1 CovR binding sites present in the emm3 genome were also enriched; additionally, we ascertained unique CovR binding, primarily to genes in mobile genetic elements and other sites of interstrain chromosomal differences. Elimination of CovS phosphatase activity specifically increased CovR occupancy at the promoters of a broad array of CovR repressed virulence factor-encoding genes, including those encoding the key GAS regulator Mga and M protein. However, a limited number of promoters had augmented enrichment at low CovR~P levels. Differential motif searches using sequences enriched at high versus low CovR~P levels revealed two distinct binding patterns. At high CovR~P, a pseudopalindromic AT-rich consensus sequence (WTWTTATAAWAAAAWNATDA) consistent with CovR binding as a dimer was determined. Conversely, sequences specifically enriched at low CovR~P contained isolated ATTARA motifs suggesting an interaction with a monomer. These data extend understanding of global CovR DNA occupancy beyond emm1 GAS and provide a mechanism for previous observations regarding hypovirulence induced by CovS phosphatase abrogation. IMPORTANCE Given its key role in pathogenesis of Gram-positive bacteria, CovR is one of the most important members of the OmpR/PhoB family of transcriptional regulators. Herein we extend recent GAS CovR global binding analyses done in emm1 to a non-emm1 strain, which is important considering the known inter-emm-type heterogeneity in GAS CovRS function. Our data provide mechanistic understanding for variation in CovRS function between emm types and the profound hypovirulence of CovS phosphatase-negative strains in addition to indicating differential targeting by phosphorylated and nonphosphorylated CovR isoforms at specific CovR binding sites. These findings advance knowledge regarding how a key bacterial virulence regulator impacts pathogenesis and add to the growing appreciation of the function of nonphosphorylated OmpR/PhoB family members.


Assuntos
Infecções Estreptocócicas , Fatores de Virulência , Humanos , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Streptococcus pyogenes/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Infecções Estreptocócicas/microbiologia , Regulação Bacteriana da Expressão Gênica
13.
mSystems ; 8(4): e0022723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37358280

RESUMO

Group A streptococcal (GAS) strains causing severe, invasive infections often have mutations in the control of virulence two-component regulatory system (CovRS) which represses capsule production, and high-level capsule production is considered critical to the GAS hypervirulent phenotype. Additionally, based on studies in emm1 GAS, hyperencapsulation is thought to limit transmission of CovRS-mutated strains by reducing GAS adherence to mucosal surfaces. It has recently been identified that about 30% of invasive GAS strains lacks capsule, but there are limited data regarding the impact of CovS inactivation in such acapsular strains. Using publicly available complete genomes (n = 2,455) of invasive GAS strains, we identified similar rates of CovRS inactivation and limited evidence for transmission of CovRS-mutated isolates for both encapsulated and acapsular emm types. Relative to encapsulated GAS, CovS transcriptomes of the prevalent acapsular emm types emm28, emm87, and emm89 revealed unique impacts such as increased transcript levels of genes in the emm/mga region along with decreased transcript levels of pilus operon-encoding genes and the streptokinase-encoding gene ska. CovS inactivation in emm87 and emm89 strains, but not emm28, increased GAS survival in human blood. Moreover, CovS inactivation in acapsular GAS reduced adherence to host epithelial cells. These data suggest that the hypervirulence induced by CovS inactivation in acapsular GAS follows distinct pathways from the better studied encapsulated strains and that factors other than hyperencapsulation may account for the lack of transmission of CovRS-mutated strains. IMPORTANCE Devastating infections due to group A streptococci (GAS) tend to occur sporadically and are often caused by strains that contain mutations in the control of virulence regulatory system (CovRS). In well-studied emm1 GAS, the increased production of capsule induced by CovRS mutation is considered key to both hypervirulence and limited transmissibility by interfering with proteins that mediate attachment to eukaryotic cells. Herein, we show that the rates of covRS mutations and genetic clustering of CovRS-mutated isolates are independent of capsule status. Moreover, we found that CovS inactivation in multiple acapsular GAS emm types results in dramatically altered transcript levels of a diverse array of cell-surface protein-encoding genes and a unique transcriptome relative to encapsulated GAS. These data provide new insights into how a major human pathogen achieves hypervirulence and indicate that factors other than hyperencapsulation likely account for the sporadic nature of the severe GAS disease.


Assuntos
Proteínas de Bactérias , Transcriptoma , Humanos , Transcriptoma/genética , Proteínas de Bactérias/genética , Virulência/genética , Mutação/genética , Fenótipo , Streptococcus pyogenes/genética
14.
Microbiol Spectr ; 11(3): e0041523, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37022173

RESUMO

Bloodstream infections (BSIs) pose a significant mortality risk for acute myeloid leukemia (AML) patients. It has been previously reported that intestinal domination (>30% relative abundance [RA] attributed to a single taxon) with the infecting taxa often precedes BSI in stem cell transplant patients. Using 16S rRNA amplicon sequencing, we analyzed oral and stool samples from 63 AML patients with BSIs to determine the correlation between the infectious agent and microbiome composition. Whole-genome sequencing and antimicrobial susceptibilities were performed on all BSI isolates. Species-level detection of the infectious agent and presence of antibiotic resistance determinants in the stool (blaCTX-M-15, blaCTX-M-14, cfrA, and vanA) were confirmed via digital droplet PCR (ddPCR). Individuals with Escherichia coli (stool P < 0.001), Pseudomonas aeruginosa (oral P = 0.004, stool P < 0.001), and viridans group streptococci (VGS) (oral P = 0.001) bacteremia had a significantly higher relative abundance of those respective genera than other BSI patients, which appeared to be site specific. Although 78% of patients showed presence of the infectious genera in the stool and/or saliva, only 7 exhibited microbiome domination. ddPCR confirmed species specificity of the 16S data and detected the antibiotic resistance determinants found in the BSI isolates within concurrent stools. Although gastrointestinal (GI) domination by an infecting organism was not present at the time of most BSIs in AML, the pathogens, along with AMR elements, were detectable in the majority of patients. Thus, rapid genetic assessment of oral and stool samples for the presence of potential pathogens and AMR determinants might inform personalized therapeutic approaches in immunocompromised patients with suspected infection. IMPORTANCE A major cause of mortality in hematologic malignancy patients is BSI. Previous studies have demonstrated that bacterial translocation from the GI microbiome is a major source of BSIs and is often preceded by increased levels of the infectious taxa in the GI (>30% abundance by 16S rRNA sequencing). In this study, we sought to better understand how domination and abundance levels of the oral and gut microbiome relate to bacteremia occurrence in acute myeloid leukemia patients. We conclude that analyses of both oral and stool samples can help identify BSI and antimicrobial resistance determinants, thus potentially improving the timing and tailoring of antibiotic treatment strategies for high-risk patients.


Assuntos
Bacteriemia , Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Microbiota , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bacteriemia/microbiologia , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
15.
JAC Antimicrob Resist ; 5(2): dlad020, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36875177

RESUMO

Background: Bacterial infections are common in patients with cancer, and many bacteria have developed resistance to currently used antibiotics. Objectives: We evaluated the in vitro activity of eravacycline (a recently developed fluorocycline) and comparators against bacterial pathogens isolated from patients with cancer. Methods: Antimicrobial susceptibility testing was performed using CLSI-approved methodology and interpretive criteria for 255 Gram-positive and 310 Gram-negative bacteria. MIC and susceptibility percentage were calculated according to CLSI and FDA breakpoints when available. Results: Eravacycline had potent activity against most Gram-positive bacteria, including MRSA. Of 80 Gram-positive isolates with available breakpoints, 74 (92.5%) were susceptible to eravacycline. Eravacycline had potent activity against most Enterobacterales, including ESBL-producing organisms. Of 230 Gram-negative isolates with available breakpoints, 201 (87.4%) were susceptible to eravacycline. Eravacycline had the best activity among comparators against carbapenem-resistant Enterobacterales, with 83% susceptibility. Eravacycline was also active against many non-fermenting Gram-negative bacteria, with the lowest MIC90 value among comparators. Conclusions: Eravacycline was active against many clinically significant bacteria isolated from patients with cancer, including MRSA, carbapenem-resistant Enterobacterales, and non-fermenting Gram-negative bacilli. Eravacycline might play an important role in the treatment of bacterial infections in patients with cancer, and additional clinical evaluation is warranted.

16.
JAC Antimicrob Resist ; 5(2): dlad034, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36994231

RESUMO

Background: Fluoroquinolones are used for infection prevention in high-risk patients with haematological malignancies. Fluoroquinolones are active against many Gram-negative bacilli (GNB) but are less active against Gram-positive organisms. We evaluated the in vitro activity of delafloxacin and selected comparators against 560 bacterial pathogens isolated exclusively from patients with cancer. Methods: Antimicrobial susceptibility testing and time-kill studies were performed using CLSI-approved methodology and interpretive criteria for 350 Gram-positive organisms and 210 GNB that had been recently isolated from patients with cancer. Results: Delafloxacin was more active than ciprofloxacin and levofloxacin against Staphylococcus aureus and CoNS. Overall, 63% of staphylococcal isolates were susceptible to delafloxacin, 37% to ciprofloxacin and 39% to levofloxacin. Activity of delafloxacin against most Enterobacterales was similar to that of ciprofloxacin and levofloxacin. Escherichia coli and MDR Pseudomonas aeruginosa isolates had low susceptibility rates to the three tested fluoroquinolones. In time-kill studies delafloxacin and levofloxacin decreased the bacterial load to 3.0 log10 in 8 and 13 h, respectively, using 8 × MIC. Conclusions: Delafloxacin is more active than ciprofloxacin and levofloxacin against S. aureus but has substantial gaps in coverage against GNB. Resistance to all three fluoroquinolones could be high among leading GNB such as E. coli and P. aeruginosa, particularly in cancer centres where these agents are widely used as prophylactic agents.

17.
bioRxiv ; 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36778324

RESUMO

Objectives: To characterize a bla CMY variant associated with ceftazidime-avibactam (CZA) resistance from a serially collected Escherichia coli isolate. Methods: A patient with an intra-abdominal infection due to recurrent E. coli was treated with CZA. On day 48 of CZA therapy, E. coli with a CZA MIC of >256 mg/L was identified from abdominal drainage. Illumina WGS was performed on all isolates to identify potential resistance mechanisms. Site-directed mutants of CMY ß-lactamase were constructed to identify amino acid residues responsible for CZA resistance. Results: WGS revealed that all three isolates were E. coli ST410. The CZA-resistant strain uniquely acquired a novel CMY ß-lactamase gene, herein called bla CMY-185 , harbored on an IncIγ-type conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2 including A114E, Q120K, V211S, and N346Y and conferred high-level CZA resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced CZA susceptibility. However, double and triple mutants containing N346Y previously associated with CZA resistance in other AmpC enzymes, conferred CZA MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to the steric hindrance between the side chain of Y346 and the sulfate group of avibactam. Conclusion: We identified CZA resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer CZA resistance.

18.
Res Sq ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778495

RESUMO

Acute gastrointestinal intestinal GVHD (aGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation, and the intestinal microbiota is known to impact on its severity. However, an association between treatment response of aGI-GVHD and the intestinal microbiota has not been well-studied. In a cohort of patients with aGI-GVHD (n=37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and loss of Bacteroides ovatus from the microbiome. In a mouse model of carbapenem-aggravated GVHD, introducing Bacteroides ovatus reduced severity of GVHD and improved survival. Bacteroides ovatus reduced degradation of colonic mucus by another intestinal commensal, Bacteroides thetaiotaomicron, via its ability to metabolize dietary polysaccharides into monosaccharides, which then inhibit mucus degradation by Bacteroides thetaiotaomicron and reduce GVHD-related mortality.

19.
bioRxiv ; 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798241

RESUMO

Extended-spectrum cephalosporin resistant Escherichia coli (ESC-R- Ec ) is an urgent public health threat with sequence type clonal complex 131 (STc131), phylogroup B2 strains being particularly concerning as the dominant cause of ESC-R- Ec infections. To address the paucity of recent ESC-R- Ec molecular epidemiology data in the United States, we used whole genome sequencing (WGS) to fully characterize a large cohort of invasive ESC-R- Ec at a tertiary care cancer center in Houston, Texas collected from 2016-2020. During the study timeframe, there were 1154 index E. coli bloodstream infections (BSIs) of which 389 (33.7%) were ESC-R- Ec . Using time series analyses, we identified a temporal dynamic of ESC-R- Ec distinct from ESC-susceptible E. coli (ESC-S- Ec ), with cases peaking in the last six months of the calendar year. WGS of 297 ESC-R- Ec strains revealed that while STc131 strains accounted for ∼45% of total BSIs, the proportion of STc131 strains remained stable across the study time frame with infection peaks driven by genetically heterogeneous ESC-R- Ec clonal complexes. Bla CTX-M variants accounted for most ß-lactamases conferring the ESC-R phenotype (89%; 220/248 index ESC-R -Ec ), and amplification of bla CTX-M genes was widely detected in ESC-R- Ec strains, particularly in carbapenem non-susceptible, recurrent BSI strains. Bla CTX-M-55 was significantly enriched within phylogroup A strains, and we identified bla CTX-M-55 plasmid-to-chromosome transmission occurring across non-B2 strains. Our data provide important information regarding the current molecular epidemiology of invasive ESC-R- Ec infections at a large tertiary care cancer center and provide novel insights into the genetic basis of observed temporal variability for these clinically important pathogens. IMPORTANCE: Given that E. coli is the leading cause of worldwide ESC-R Enterobacterales infections, we sought to assess the current molecular epidemiology of ESC-R- Ec using a WGS analysis of many BSIs over a five-year period. We identified fluctuating temporal dynamics of ESC-R- Ec infections, which has also recently been identified in other geographical regions such as Israel. Our WGS data allowed us to visualize the stable nature of STc131 over the study period and demonstrate a limited, but genetically diverse group of ESC-R- Ec clonal complexes are detected during infection peaks. Additionally, we provide a widespread assessment of ß-lactamase gene copy number in ESC-R- Ec infections and delineate mechanisms by which such amplifications are achieved in a diverse array of ESC-R- Ec strains. These data suggest that serious ESC-R- Ec infections are driven by a diverse array of strains in our cohort and impacted by environmental factors suggesting that community-based monitoring could inform novel preventative measures.

20.
JAC Antimicrob Resist ; 5(1): dlac131, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36601551

RESUMO

Background: Ceftolozane/tazobactam is a ß-lactam/ß-lactamase inhibitor combination with activity against a variety of Gram-negative bacteria, including MDR Pseudomonas aeruginosa. This agent is approved for hospital-acquired and ventilator-associated bacterial pneumonia. However, most real-world outcome data come from small observational cohorts. Thus, we sought to evaluate the utilization of ceftolozane/tazobactam at multiple tertiary hospitals in Houston, TX, USA. Methods: We conducted a multicentre retrospective study of patients receiving at least 48 h of ceftolozane/tazobactam therapy from January 2016 through to September 2019 at two hospital systems in Houston. Demographic, clinical and microbiological data were collected, including the infecting bacterial isolate, when available. The primary outcome was composite clinical success at hospital discharge. Secondary outcomes included in-hospital mortality and clinical disposition at 14 and 30 days post ceftolozane/tazobactam initiation. Multivariable logistic regression analysis was used to identify predictors of the primary outcome and mortality. Recovered isolates were tested for susceptibility to ceftolozane/tazobactam and underwent WGS. Results: A total of 263 patients were enrolled, and composite clinical success was achieved in 185 patients (70.3%). Severity of illness was the most consistent predictor of clinical success. Combination therapy with ceftolozane/tazobactam and another Gram-negative-active agent was associated with reduced odds of clinical success (OR 0.32, 95% CI 0.16-0.63). Resistance to ceftolozane/tazobactam was noted in 15.4% of isolates available for WGS; mutations in ampC and ftsI were common but did not cluster with a particular ST. Conclusions: Clinical success rate among this patient cohort treated with ceftolozane/tazobactam was similar compared with previous experiences. Ceftolozane/tazobactam remains an alternative agent for treatment of susceptible isolates of P. aeruginosa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA