Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(5): 709-724, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37363414

RESUMO

Cissus quadrangularis L., a member of the Vitaceae family, is an important medicinal plant with widespread application in Indian traditional medicines. C. quadrangularis L. whole chloroplast genome of 160,404 bp was assembled using a genome skimming approach from the whole genome library. The assembled chloroplast genome contained a large single-copy region (88,987 bp), a small single-copy region (18,621 bp), and pairs of inverted repeat regions (26,398 bp). It also comprised 133 genes, including 37 tRNAs, eight rRNAs, and 88 protein-coding genes. Aside from that, we annotated three genes atpH, petB, and psbL, as well as one duplicated copy of the ycf1 gene in C. quadrangularis L. that had previously been missing from the annotation of compared Cissus chloroplast genomes. Five divergent hotspot regions such as petA_psbJ (0.1237), rps16_trnQ-UUG (0.0913), psbC_trnS-UGA (0.0847), rps15_ycf1 (0.0788), and rps2_rpoC2 (0.0788) were identified in the investigation that could aid in future species discrimination. Surprisingly, we found the overlapping genes ycf1 and ndhF on the IRb/SSC junction, rarely seen in angiosperms. The results of the phylogenetic study showed that the genomes of the Cissus species under study formed a single distinct clade. The detailed annotations given in this study could be useful in the future for genome annotations of Cissus species. The current findings of the study have the potential to serve as a useful resource for future research in the field of population genetics and the evolutionary relationships in the Cissus genus. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01312-w.

2.
Gene ; 846: 146866, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36084895

RESUMO

Mesua ferrea is an important source of timber, oil and herbal medicines. In the present investigation, we assembled the whole chloroplast genome of M. ferrea of size 161.4 kb. The genome contained 86 protein-coding genes, 38 tRNAs, 8 rRNA genes and exhibited a characteristic quadripartite structural orientation, with two inverted repeats (27,614 bp) separated by an LSC (88,746 bp) region and an SSC (27,614 bp) (17,470 bp). Interestingly, no gene loss was identified in the M. ferrea genome, contrary to what has been observed in other Clusioid species. We compared the chloroplast genome of M. ferrea with the chloroplast genome of Bonnetia and Garcinia belonging to Bonnetiaceae and Clusiaceae families. Overall, the compared genomes possess a similar synteny of gene order except for a small inversion in Garcinia species. M. ferrea has the largest chloroplast genome size in Clusioid clade owing to the lengthening of the LSC, IR, and non-coding regions. Substantial differences were observed in population of simple sequence repeats (SSRs) and RNA editing sites among the studied genomes. A comparative assessment of chloroplast genomes revealed five highly divergence regions: rpl32, trnS-GCU_trnG-UCC, petN-psbM, psbZ_trnG-GCC and ccsA_ndhD among the analyzed sequences. Phylogenetic analyses and sequence homology search indicate that M. ferrea is closely related to the Garcinia species.


Assuntos
Genoma de Cloroplastos , Cloroplastos/genética , Tamanho do Genoma , Humanos , Repetições de Microssatélites/genética , Filogenia
3.
Chemosphere ; 287(Pt 3): 132320, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826951

RESUMO

Phosphate solubilizing bacteria (PSB) that can withstand high cadmium (Cd) stress is a desired combination for bioremediation. This study evaluated the Cd bioremediation potential of four PSB strains isolated from the contaminated soils of a municipal solid waste (MSW) discarding site (Guwahati, India). PSB strains were cultured in Pikovskaya (PVK) media, which led to higher acid phosphatase (ACP) activity and the release of organic acid. Optical density (OD) measurements were performed to determine the growth pattern of PSB; furthermore, Cd uptake by PSB was evaluated using infrared spectroscopy (IR) and X-Ray Diffraction (XRD) analyses. The 16S rRNA taxonomic analysis revealed that all the four promising PSB strains belonged to either Bacillus sp. or Enterobacter sp. One strain (SM_SS8) demonstrated higher tolerance towards Cd (up to 100 mg L-1). Flow cytometry analysis revealed 70.92%, 46.93% and 20.4% viability of SM_SS8 in 10, 50 and 100 mg L-1, respectively in PVK media containing Cd. This study has therefore substantiated the bioremediation of Cd from polluted soil by the PSB isolates. Thus, experimental results revealed a potential combo benefit, phosphate solubilization along with Cd remediation.


Assuntos
Poluentes do Solo , Solo , Bactérias , Biodegradação Ambiental , Cádmio/análise , Fosfatos , RNA Ribossômico 16S/genética , Microbiologia do Solo , Poluentes do Solo/análise , Instalações de Eliminação de Resíduos
4.
Physiol Mol Biol Plants ; 26(11): 2225-2241, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33268925

RESUMO

EST-SSR markers were developed from Pongamia pinnata transcriptome libraries. We have successfully utilised EST-SSRs to study the genetic diversity of Indian P. pinnata germplasms and transferability study on legume plants. P. pinnata is a non-edible oil, seed-bearing leguminous tree well known for its multipurpose benefits and acts as a potential source for medicine and biodiesel preparation. Moreover, the plant is not grazable by animal and wildly grown in different agro climatic condition of India. Recently, it is much used in reforestation and rehabilitation of marginal and coal mined land in different part of India. Due to increasing demand for cultivation, understanding of the genetic diversity is important parameter for further breeding and cultivation program. In this investigation, an attempt has been undertaken to develop novel EST-SSR markers by analyzing the assembled transcriptome from previously published Illumina libraries of P. pinnata, which is cross transferrable to legume plants. Twenty EST-SSR markers were developed from oil yielding and secondary metabolite biosynthesis genes. To our knowledge, this is the first EST-SSR marker based genetic diversity study on Indian P. pinnata germplasms. The genetic diversity parameter analysis of P. pinnata showed that the Gangetic plain and Eastern India are highly diverse compared to the Central Deccan and Western germplasms. The lowest genetic diversity in the Western region may be due to the pressure of lower precipitation, high-temperature stress and reduced groundwater availability. Nevertheless, the highest genetic diversity of Gangetic plain and Eastern India may be due to the higher groundwater availability, high precipitation, higher temperature fluctuations and growing by the side of glacier-fed river water. Thus, our study shows the evidence of natural selection on the genetic diversity of P. pinnata germplasms of the Indian subcontinent.

5.
Mol Biotechnol ; 62(1): 31-42, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31673989

RESUMO

Pongamia pinnata (also called Millettia pinnata), a non-edible oil yielding tree, is well known for its multipurpose benefits and acts as a potential source for medicine and biodiesel preparation. Due to increase in demand for cultivation, understanding of genetic diversity is an important parameter for further breeding and cultivation programme. Transposable elements (TEs) are a major component of plant genome but still, their evolutionary significance in Pongamia remains unexplored. In view to understand the role of TEs in genome diversity, Pongamia unigenes were screened for the presence of TE cassettes. Our analysis showed the presence of all categories of TE cassettes in unigenes with major contribution of long terminal repeat-retrotransposons towards unigene diversity. Interestingly, the insertion of some TEs was also observed in both organellar genomes. The study of insertion of TEs in coding sequence is of great interest as they may be responsible for protein diversity thereby influencing the phenotype. The present investigation confirms the exaptation phenomenon in pyruvate decarboxylase (PDC) gene where the entire exon sequence was derived from Ty3-gypsy like retrotransposon. The study of PDC protein revealed the translation of gypsy element into protein. Furthermore, the phylogenetic study confirmed the diversity in PDC gene due to insertion of the gypsy element, where the PDC genes with and without gypsy insertion were clustered separately.


Assuntos
Genoma de Planta/genética , Pongamia/genética , Piruvato Descarboxilase/genética , Retroelementos/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Éxons/genética , Genes de Cloroplastos , Genes Mitocondriais , Fases de Leitura Aberta , Filogenia , Pongamia/metabolismo , Sequências Repetidas Terminais/genética , Transcriptoma/genética
6.
Mol Biol Rep ; 46(1): 177-189, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30415443

RESUMO

Genetic structure was evaluated among wild Alpinia nigra (Gaertn.) B.L. Burtt, populations. The information of genetic relatedness was developed using random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and barcoding loci (plastid and mitochondrial). The order (high to low) of Shannon's information index (I) and Nei's gene diversity (h) from the populations was: "IIT Guwahati" > "Amingaon" > "Saraighat". Genetic diversity decreased and genetic differentiation increased among the three populations. We observed no isolation by distance thus lower amount of gene flow was observed. Narrow range of genetic distance among the three populations and appearance of two distinct clusters strengthened the geographical isolation in dendrogram and principal component analysis. No mutation among the three populations was observed for seven plastid loci and two mitochondrial tested suggesting the taxonomic homogeneity. The phylogeny based on nine barcoding loci supported our observation that individuals of IIT Guwahati were partially isolated from the outside populations. Our study will provide a backbone for developing strategies to resist habitat fragmentation of Zingiberaceous plants.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Genética Populacional/métodos , Zingiberaceae/genética , China , Fluxo Gênico , Variação Genética/genética , Repetições de Microssatélites , Filogenia , Técnica de Amplificação ao Acaso de DNA Polimórfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA