Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Mach Intell ; 5(7): 799-810, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38706981

RESUMO

Medical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting and contributing to the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving both healthcare provider and patient experience. Unlocking this potential requires systematic, quantitative evaluation of the performance of medical AI models on large-scale, heterogeneous data capturing diverse patient populations. Here, to meet this need, we introduce MedPerf, an open platform for benchmarking AI models in the medical domain. MedPerf focuses on enabling federated evaluation of AI models, by securely distributing them to different facilities, such as healthcare organizations. This process of bringing the model to the data empowers each facility to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status and real-world deployment, our roadmap and, importantly, the use of MedPerf with multiple international institutions within cloud-based technology and on-premises scenarios. Finally, we welcome new contributions by researchers and organizations to further strengthen MedPerf as an open benchmarking platform.

3.
Nat Commun ; 13(1): 7346, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470898

RESUMO

Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.


Assuntos
Big Data , Glioblastoma , Humanos , Aprendizado de Máquina , Doenças Raras , Disseminação de Informação
4.
Phys Med Biol ; 67(21)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36198326

RESUMO

Objective.Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets.Approach.Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks.Main results.In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases.Significance.The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL's initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced atgithub.com/intel/openfl.


Assuntos
Algoritmos , Aprendizado de Máquina , Humanos
5.
Phys Med Biol ; 67(20)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137534

RESUMO

Objective.De-centralized data analysis becomes an increasingly preferred option in the healthcare domain, as it alleviates the need for sharing primary patient data across collaborating institutions. This highlights the need for consistent harmonized data curation, pre-processing, and identification of regions of interest based on uniform criteria.Approach.Towards this end, this manuscript describes theFederatedTumorSegmentation (FeTS) tool, in terms of software architecture and functionality.Main results.The primary aim of the FeTS tool is to facilitate this harmonized processing and the generation of gold standard reference labels for tumor sub-compartments on brain magnetic resonance imaging, and further enable federated training of a tumor sub-compartment delineation model across numerous sites distributed across the globe, without the need to share patient data.Significance.Building upon existing open-source tools such as the Insight Toolkit and Qt, the FeTS tool is designed to enable training deep learning models targeting tumor delineation in either centralized or federated settings. The target audience of the FeTS tool is primarily the computational researcher interested in developing federated learning models, and interested in joining a global federation towards this effort. The tool is open sourced athttps://github.com/FETS-AI/Front-End.


Assuntos
Neoplasias , Software , Encéfalo , Humanos , Imageamento por Ressonância Magnética/métodos
6.
NPJ Digit Med ; 3: 119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015372

RESUMO

Data-driven machine learning (ML) has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and privacy concerns restrict access to this data. However, without access to sufficient data, ML will be prevented from reaching its full potential and, ultimately, from making the transition from research to clinical practice. This paper considers key factors contributing to this issue, explores how federated learning (FL) may provide a solution for the future of digital health and highlights the challenges and considerations that need to be addressed.

7.
Sci Rep ; 10(1): 12598, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724046

RESUMO

Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.


Assuntos
Disseminação de Informação , Relações Interinstitucionais , Aprendizagem , Medicina , Pacientes , Privacidade , Humanos
8.
Brainlesion ; 11383: 92-104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231720

RESUMO

Deep learning models for semantic segmentation of images require large amounts of data. In the medical imaging domain, acquiring sufficient data is a significant challenge. Labeling medical image data requires expert knowledge. Collaboration between institutions could address this challenge, but sharing medical data to a centralized location faces various legal, privacy, technical, and data-ownership challenges, especially among international institutions. In this study, we introduce the first use of federated learning for multi-institutional collaboration, enabling deep learning modeling without sharing patient data. Our quantitative results demonstrate that the performance of federated semantic segmentation models (Dice=0.852) on multimodal brain scans is similar to that of models trained by sharing data (Dice=0.862). We compare federated learning with two alternative collaborative learning methods and find that they fail to match the performance of federated learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA