Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1091964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713227

RESUMO

Several species in the genus Legionella are known to cause an acute pneumonia when the aerosols containing the bacteria from man-made water systems are inhaled. The disease is usually caused by Legionella pneumophila, but other species have been implicated in the infection. The disease is frequently manifested as an outbreak, which means several people are affected when exposed to the common source of Legionella contamination. Therefor environmental surveillance which includes isolation and identification of Legionella is performed routinely. However, usually no molecular or genome-based methods are employed in further characterization of the isolates during routine environmental monitoring. During several years of such monitoring, isolates from different geographical locations were collected and 39 of them were sequenced by hybrid de novo approach utilizing short and long sequencing reads. In addition, the isolates were typed by standard culture and MALDI-TOF method. The sequencing reads were assembled and annotated to produce high-quality genomes. By employing discriminatory genome typing, four potential new species in the Legionella genus were identified, which are yet to be biochemically and morphologically characterized. Moreover, functional annotations concerning virulence and antimicrobial resistance were performed on the sequenced genomes. The study contributes to the knowledge on little-known non-pneumophila species present in man-made water systems and establishes support for future genetic relatedness studies as well as understanding of their pathogenic potential.

3.
Water Res ; 62: 293-301, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24963890

RESUMO

Outbreaks of Legionnaires' disease require environmental testing of water samples from potentially implicated building water systems to identify the source of exposure. A previous study reports a large impact on Legionella sample results due to shipping and delays in sample processing. Specifically, this same study, without accounting for measurement error, reports more than half of shipped samples tested had Legionella levels that arbitrarily changed up or down by one or more logs, and the authors attribute this result to shipping time. Accordingly, we conducted a study to determine the effects of sample holding/shipping time on Legionella sample results while taking into account measurement error, which has previously not been addressed. We analyzed 159 samples, each split into 16 aliquots, of which one-half (8) were processed promptly after collection. The remaining half (8) were processed the following day to assess impact of holding/shipping time. A total of 2544 samples were analyzed including replicates. After accounting for inherent measurement error, we found that the effect of holding time on observed Legionella counts was small and should have no practical impact on interpretation of results. Holding samples increased the root mean squared error by only about 3-8%. Notably, for only one of 159 samples, did the average of the 8 replicate counts change by 1 log. Thus, our findings do not support the hypothesis of frequent, significant (≥= 1 log10 unit) Legionella colony count changes due to holding.


Assuntos
Meio Ambiente , Legionella/crescimento & desenvolvimento , Microbiologia da Água , Humanos , Fatores de Tempo
4.
J Clin Microbiol ; 47(8): 2525-35, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19553574

RESUMO

Approximately 84% of legionellosis cases are due to Legionella pneumophila serogroup 1. Moreover, a majority of L. pneumophila serogroup 1 clinical isolates react positively with monoclonal antibody 2 (MAb2) of the international standard panel. Over 94% of the legionellosis outbreaks investigated by the Centers for Disease Control and Prevention are due to this subset of L. pneumophila serogroup 1. To date, there is no complete explanation for the enhanced ability of these strains to cause disease. To better characterize these organisms, we subtyped 100 clinical L. pneumophila serogroup 1 isolates and 50 environmental L. pneumophila serogroup 1 isolates from the United States by (i) reactivity with MAb2, (ii) presence of a lag-1 gene required for the MAb2 epitope, and (iii) sequence-based typing analysis. Our results showed that the MAb2 epitope and lag-1 gene are overrepresented in clinical L. pneumophila serogroup 1 isolates. MAb2 recognized 75% of clinical isolates but only 6% of environmental isolates. Similarly, 75% of clinical isolates but only 8% of environmental isolates harbored lag-1. We identified three distinct lag-1 alleles, referred to as Philadelphia, Arizona, and Lens alleles, among 79 isolates carrying this gene. The Arizona allele is described for the first time in this study. We identified 59 different sequence types (STs), and 34 STs (58%) were unique to the United States. Our results support the hypothesis that a select group of STs may have an enhanced ability to cause legionellosis. Combining sequence typing and lag-1 analysis shows that STs tend to associate with a single lag-1 allele type, suggesting a hierarchy of virulence genotypes. Further analysis of ST and lag-1 profiles may identify genotypes of L. pneumophila serogroup 1 that warrant immediate intervention.


Assuntos
Acetiltransferases/genética , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Microbiologia Ambiental , Legionella pneumophila/classificação , Legionella pneumophila/genética , Doença dos Legionários/microbiologia , Acetiltransferases/imunologia , Alelos , Sequência de Aminoácidos , Anticorpos Antibacterianos , Anticorpos Monoclonais , Proteínas de Bactérias/imunologia , DNA Bacteriano/química , Ordem dos Genes , Genótipo , Humanos , Legionella pneumophila/isolamento & purificação , Epidemiologia Molecular , Dados de Sequência Molecular , Prevalência , Alinhamento de Sequência , Análise de Sequência de DNA , Sorotipagem , Estados Unidos
5.
Appl Environ Microbiol ; 68(4): 1743-53, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11916692

RESUMO

We examined 12,026 fungal air samples (9,619 indoor samples and 2,407 outdoor samples) from 1,717 buildings located across the United States; these samples were collected during indoor air quality investigations performed from 1996 to 1998. For all buildings, both indoor and outdoor air samples were collected with an Andersen N6 sampler. The culturable airborne fungal concentrations in indoor air were lower than those in outdoor air. The fungal levels were highest in the fall and summer and lowest in the winter and spring. Geographically, the highest fungal levels were found in the Southwest, Far West, and Southeast. The most common culturable airborne fungi, both indoors and outdoors and in all seasons and regions, were Cladosporium, Penicillium, nonsporulating fungi, and Aspergillus. Stachybotrys chartarum was identified in the indoor air in 6% of the buildings studied and in the outdoor air of 1% of the buildings studied. This study provides industrial hygienists, allergists, and other public health practitioners with comparative information on common culturable airborne fungi in the United States. This is the largest study of airborne indoor and outdoor fungal species and concentrations conducted with a standardized protocol to date.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Fungos/isolamento & purificação , Contagem de Colônia Microbiana , Monitoramento Ambiental/métodos , Fungos/classificação , Habitação , Estações do Ano , Especificidade da Espécie , Inquéritos e Questionários , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA