Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(24): e2309486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174606

RESUMO

Inorganic thick-film dielectric capacitors with ultrahigh absolute recovered energy at low electric fields are extremely desired for their wide application in pulsed power systems. However, a long-standing technological bottleneck exists between high absolute energy and large recovered energy density. A new strategy is offered to fabricate selected all-inorganic 0-3 composite thick films up to 10 µm by a modified sol-slurry method. Here, the ceramic powder is dispersed into the sol-gel matrix to form a uniform suspension, assisted by powder, therefore, the 2 µm-thickness after single layer spin coating. To enhance the energy-storage performances, the composites process is thoroughly optimized by ultrafine powder (<50 nm) technique based on a low-cost coprecipitation method instead of the solid-state and sol-gel methods. 0D coprecipitation powder has a similar dielectric constant to the corresponding 3D films, thus uneven electrical field distributions is overcome. Moreover, the increase of interfacial polarization is realized due to the larger specific surface area. A maximum recoverable energy density of 14.62 J cm-3 is obtained in coprecipitation thick films ≈2.2 times that of the solid-state powder and ≈1.3 times for sol-gel powder. This study provides a new paradigm for further guiding the design of composite materials.

2.
ACS Appl Mater Interfaces ; 15(40): 47221-47228, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768723

RESUMO

Next-generation electromechanical conversion devices have a significant demand for high-performance lead-free piezoelectric materials to meet environmentally friendly requirements. However, the low electromechanical properties of lead-free piezoceramics limit their application in high-end transducer applications. In this work, a 0.96K0.48Na0.52Nb0.96Sb0.04O3-0.04(Bi0.5-xSmx)Na0.5ZrO3 (abbreviated as T-NKN-xSm) ceramic was designed through phase regulation and texture engineering, which is expected to solve this difficulty. Through our research, we successfully demonstrated the enhanced electromechanical performance of lead-free textured ceramics with a highly oriented [001]c orientation. Notably, the T-NKN-xSm textured ceramics doped with 0.05 mol % Sm exhibited the optimal electromechanical performance: piezoelectric coefficient d33 ≈ 710 pC N-1, longitudinal electromechanical coupling k33 ≈ 0.88, planar electromechanical coupling kp ≈ 0.80, and Curie temperature Tc ≈ 244 °C. Finally, we conducted a detailed investigation into the phase and domain structures of the T-NKN-Sm ceramics, providing valuable insights for achieving high electromechanical properties in NKN-based ceramics. This research serves as a crucial reference for the development of advanced electromechanical devices by facilitating the utilization of lead-free piezoelectric materials with superior performance and environmental benefits.

3.
Micromachines (Basel) ; 13(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296068

RESUMO

Ultrasonic transducers are the basic core component of diagnostic imaging devices, wherein the piezoelectric materials are the active element of transducers. Recent studies showed that the alternating current poling (ACP) method could develop the properties of piezocomposites, which had great potential to improve transducer performance. Herein, transducers (fc = 3 MHz) made of DCP and ACP 1-3 piezocomposites (prepared by PZT-5H ceramics and PMN-PT single crystals) were fabricated. The effect of the ACP method on the bandwidth and insertion loss (sensitivity) was explored. The results indicate that the ACP method can significantly enhance the bandwidth and slightly increase the insertion loss of transducers. Particularly, a superhigh bandwidth of 142.8% was achieved in the transducer of ACP 1-3 PMN-PT single crystal combined with suitable matching and backing layers. This bandwidth is higher than that of all reported transducers with similar center frequency. Moreover, the optimization mechanism of transducer performance by the ACP method was discussed. The obtained results suggested that the ACP is an effective and convenient technology to improve transducer performances, especially for the bandwidth.

4.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298374

RESUMO

High-performance broadband ultrasound transducers provide superior imaging quality in biomedical ultrasound imaging. However, a matching design that perfectly transmits the acoustic energy between the active piezoelectric element and the target medium over the operating spectrum is still lacking. In this work, an anisotropic gradient acoustic impedance composite material as the matching layer of an ultrasonic transducer was designed and fabricated; it is a non-uniform material with the continuous decline of acoustic impedance along the direction of ultrasonic propagation in a sub-wavelength range. This material provides a broadband window for ultrasonic propagation in a wide frequency range and achieves almost perfect sound energy transfer efficiency from the piezoelectric material to the target medium. Nano tungsten particles and epoxy resin were selected as filling and basic materials, respectively. Along the direction of ultrasonic propagation, the proportion of tungsten powder was carefully controlled to decrease gradually, following the natural exponential form in a very narrow thickness range. Using this new material as a matching layer with high-performance single crystals, the -6 dB bandwidth of the PMN-PT ultrasonic transducer could reach over 170%, and the insertion loss was only -20.3 dB. The transducer achieved a temporal signal close to a single wavelength, thus there is the potential to dramatically improve the resolution and imaging quality of the biomedical ultrasound imaging system.


Assuntos
Resinas Epóxi , Ultrassom , Impedância Elétrica , Pós , Desenho de Equipamento , Transdutores , Acústica
5.
Nanoscale ; 12(16): 8958-8968, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32270170

RESUMO

A novel all-inorganic flexible bilayer-like Pb0.99Nb0.02(Zr0.55Sn0.40Ti0.05)0.98O3 (PNZSTBL) thin film with the same chemical composition is designed to enhance its energy-storage performance. The PNZSTBL thin film that consists of a large polarization (PNZSTLP) top layer and a high electric breakdown field (PNZSTHE) bottom layer are deposited on flexible mica by controlling the sputtering pressure. The dislocations in such a bilayer-like film can be repressed effectively owing to the identical chemical composition. Most importantly, the PNZSTBL exhibits the complementary advantages of the PNZSTHE and PNZSTLP films based on the electric field amplifying effect and interlayer coupling. An enhanced recoverable energy-storage density (Wrec) of 39.35 J cm-3 is achieved in the PNZSTBL thin film, which is 70% higher than that of the single-layer PNZSTLP. Meanwhile, the flexible PNZSTBL thin film enjoys an outstanding stability in terms of frequency (10-5000 Hz) and temperature (30-170 °C). In addition, the flexible PNZSTBL thin film shows a favorable mechanical cycling endurance after repeated bending 1200 times for a 3.5 mm tensile radius. This work offers a fresh strategy to design prospective bilayer-like dielectric thin films for optimizing the energy-storage performances of materials.

6.
ACS Appl Mater Interfaces ; 11(37): 34117-34127, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31449743

RESUMO

Multifunctional capacitors can efficiently integrate multiple functionalities into a single material to further down-scale state-of-the-art integrated circuits, which are urgently needed in new electronic devices. Here, an all-inorganic flexible capacitor based on Pb0.91La0.09 (Zr0.65Ti0.35)0.9775O3 (PLZT 9/65/35) relaxor ferroelectric thick film (1 µm) was successfully fabricated on LaNiO3/F-Mica substrate for application in electrostatic energy storage and electrocaloric refrigeration simultaneously. The flexible PLZT 9/65/35 thick film presents a desirable breakdown field of 1998 kV/cm, accompanied by a superior recoverable energy density (Wrec) of 40.2 J/cm3. Meanwhile, the thick film exhibits excellent stability of energy-storage performance, including a broad operating temperature (30-180 °C), reduplicative charge-discharge cycles (1 × 107 cycles), and mechanical bending cycles (2000 times). Moreover, a large reversible adiabatic temperature change (ΔT) of 18.0 °C, accompanied by an excellent electrocaloric strength (ΔT/ΔE) of 22.4 K cm/V and refrigerant capacity (RC) of 11.2 J/cm3, is obtained at 80 °C in the flexible PLZT 9/65/35 thick film under the moderate applied electric field of 850 kV/cm. All of these results shed light on a flexible PLZT 9/65/35 thick film capacitor that opens up a route to practical applications in microenergy-storage systems and on-chip thermal refrigeration of advanced electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA