Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1423124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114353

RESUMO

Diabetes mellitus induces a pathophysiological disorder known as diabetic cardiomyopathy and may eventually cause heart failure. Diabetic cardiomyopathy is manifested with systolic and diastolic contractile dysfunction along with alterations in unique cardiomyocyte proteins and diminished cardiomyocyte contraction. Multiple mechanisms contribute to the pathology of diabetic cardiomyopathy, mainly including abnormal insulin metabolism, hyperglycemia, glycotoxicity, cardiac lipotoxicity, endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, calcium treatment damage, programmed myocardial cell death, improper Renin-Angiotensin-Aldosterone System activation, maladaptive immune modulation, coronary artery endothelial dysfunction, exocrine dysfunction, etc. There is an urgent need to investigate the exact pathogenesis of diabetic cardiomyopathy and improve the diagnosis and treatment of this disease. The nuclear receptor superfamily comprises a group of transcription factors, such as liver X receptor, retinoid X receptor, retinoic acid-related orphan receptor-α, retinoid receptor, vitamin D receptor, mineralocorticoid receptor, estrogen-related receptor, peroxisome proliferatoractivated receptor, nuclear receptor subfamily 4 group A 1(NR4A1), etc. Various studies have reported that nuclear receptors play a crucial role in cardiovascular diseases. A recently conducted work highlighted the function of the nuclear receptor superfamily in the realm of metabolic diseases and their associated complications. This review summarized the available information on several important nuclear receptors in the pathophysiology of diabetic cardiomyopathy and discussed future perspectives on the application of nuclear receptors as targets for diabetic cardiomyopathy treatment.

2.
Talanta ; 275: 126134, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692044

RESUMO

Phosphoenolpyruvate (PEP) is an essential intermediate metabolite that is involved in various vital biochemical reactions. However, achieving the direct and accurate quantification of PEP in plasma or serum poses a significant challenge owing to its strong polarity and metal affinity. In this study, a sensitive method for the direct determination of PEP in plasma and serum based on ethylenediaminetetraacetic acid (EDTA)-facilitated hydrophilic interaction liquid chromatography-tandem mass spectrometry was developed. Superior chromatographic retention and peak shapes were achieved using a zwitterionic stationary-phase HILIC column with a metal-inert inner surface. Efficient dechelation of PEP-metal complexes in serum/plasma samples was achieved through the introduction of EDTA, resulting in a significant enhancement of the PEP signal. A PEP isotopically labelled standard was employed as a surrogate analyte for the determination of endogenous PEP, and validation assessments proved the sensitivity, selectivity, and reproducibility of this method. The method was applied to the comparative quantification of PEP in plasma and serum samples from mice and rats, as well as in HepG2 cells, HEK293T cells, and erythrocytes; the results confirmed its applicability in PEP-related biomedical research. The developed method can quantify PEP in diverse biological matrices, providing a feasible opportunity to investigate the role of PEP in relevant biomedical research.


Assuntos
Ácido Edético , Interações Hidrofóbicas e Hidrofílicas , Fosfoenolpiruvato , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Animais , Humanos , Ácido Edético/química , Camundongos , Cromatografia Líquida/métodos , Ratos , Fosfoenolpiruvato/química , Fosfoenolpiruvato/sangue , Fosfoenolpiruvato/metabolismo , Células HEK293 , Células Hep G2 , Ratos Sprague-Dawley , Masculino
3.
Food Chem ; 428: 136712, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37441938

RESUMO

Excessive use of veterinary drugs in livestock growth poses a threat to food safety. It is, however, challenging to quantify these multi-class veterinary drugs within animal muscles, because of their varied physicochemical properties. In this work, we presented a simple, efficient and sensitive method for the simultaneous determination of multi-class veterinary drugs with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The method involves a highly efficient extraction using a EDTA (pH 7)-ACN (30:70, v/v) solvent system, followed by a one-step solid-phase extraction cleanup approach with PRiME HLB sorbent (Reversed-phase N-vinylpyrrolidone and divinylbenzene copolymer). For all the analytes, over a wide range of polarity, satisfactory recoveries were obtained between 70% and 120%, with relative standard deviations <15%. Excellent sensitivities were achieved with the limits of quantification ranging from 0.2 µg/kg to 3.0 µg/kg. This developed method provides a new targeted strategy for the analysis of multi-class veterinary drugs in muscle matrices.


Assuntos
Resíduos de Drogas , Drogas Veterinárias , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Drogas Veterinárias/análise , Resíduos de Drogas/análise , Músculos/química , Extração em Fase Sólida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA