Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 677(Pt B): 872-881, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39173519

RESUMO

The highly selective conversion of CO2 into valuable C2H4 is a highly important but particularly challenging reaction. Herein, the metal-organic frameworks MOF-74(Cu) with infinite Cu(II)-O chains and Cu-BTC (BTC=benzene-1,3,5-tricarboxylate) with paddle-wheel binuclear Cu(II) clusters are used as precursors. These MOFs are reduced by NaBH4 to obtain Cu0/Cuδ+-based photocatalysts denoted as R-MOF-74(Cu) and R-Cu-BTC, respectively. Significantly, R-MOF-74(Cu) achieves a high selectivity of 90.2 % for C2H4 with a yield rate of 6.5 µmol g-1 within 5 h due to its high Cu+ content. To the best of our knowledge, this C2H4 product selectivity is a record high among all the photocatalysts reported so far for photocatalytic CO2 reduction. In contrast, R-Cu-BTC only forms CO as a product with a cumulative yield of 0.7 µmol g-1 within 5 h. Photoelectrochemical characterization and electron paramagnetic resonance results show that R-MOF-74(Cu) has low interfacial transfer resistance, high photogenerated electron separation efficiency, and excellent CO2 activation and water oxidation performance. In addition, in situ Fourier transform infrared spectroscopy is used to determine the possible reaction pathway from CO2 to C2H4 over R-MOF-74(Cu). This work demonstrates the great potential of MOF-derived photocatalysts for the conversion of CO2 into C2H4 and provides guidance for future photocatalyst development.

2.
ACS Appl Mater Interfaces ; 16(26): 33601-33610, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889009

RESUMO

Photoreduction of CO2 with water into chemical feedstocks of fuels provides a green way to help solve both the energy crisis and carbon emission issues. Metal-organic frameworks (MOFs) show great potential for CO2 photoreduction. However, poor water stability and sluggish charge transfer could limit their application. Herein, three water-stable MOFs functionalized with electron-donating methyl groups and/or electron-withdrawing trifluoromethyl groups are obtained for the CO2 photoreduction. Compared with UiO-67-o-CF3-CH3 and UiO-67-o-(CF3)2, UiO-67-o-(CH3)2 achieves excellent performance with an average CO generation rate of 178.0 µmol g-1 h-1 without using any organic solvent or sacrificial reagent. The superior photocatalytic activity of UiO-67-o-(CH3)2 is attributed to the fact that compared with trifluoromethyl groups, methyl groups could not only elevate CO2 adsorption capacity and reduction potential but also promote photoinduced charge separation and migration. These are evidenced by gas physisorption, photoluminescence, time-resolved photoluminescence, electrochemical impedance spectroscopy, transient photocurrent characteristics, and density functional theory calculations. The possible working mechanisms of electron-donating methyl groups are also proposed. Moreover, UiO-67-o-(CH3)2 demonstrates excellent reusability for the CO2 reduction. Based on these results, it could be affirmed that the strategy of modulating substituent electronegativity could provide guidance for designing highly efficient photocatalysts.

3.
Biomimetics (Basel) ; 9(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38786482

RESUMO

To inhibit the deep conversion of partial oxidation products (POX-products) in C-H bonds' functionalization utilizing O2, 5-(4-(chloromethyl)phenyl)-10,15,20-tris(perfluorophenyl)porphyrin cobalt(II) and 5-(4-(chloromethyl)phenyl)-10,15,20-tris(perfluorophenyl)porphyrin copper(II) were immobilized on the surface of hybrid silica to conduct relay catalysis on the surface. Fluorocarbons with low polarity and heterogeneous catalysis were devised to decrease the convenient accessibility of polar POX-products to catalytic centers on the lower polar surface. Relay catalysis between Co and Cu was designed to utilize the oxidation intermediates alkyl hydroperoxides to transform more C-H bonds. Systematic characterizations were conducted to investigate the structure of catalytic materials and confirm their successful syntheses. Applied to C-H bond oxidation, not only deep conversion of POX-products was inhibited but also substrate conversion and POX-product selectivity were improved simultaneously. For cyclohexane oxidation, conversion was improved from 3.87% to 5.27% with selectivity from 84.8% to 92.3%, which was mainly attributed to the relay catalysis on the surface excluding products. The effects of the catalytic materials, product exclusion, relay catalysis, kinetic study, substrate scope, and reaction mechanism were also investigated. To our knowledge, a practical and novel strategy was presented to inhibit the deep conversion of POX-products and to achieve efficient and accurate oxidative functionalization of hydrocarbons. Also, a valuable protocol was provided to avoid over-reaction in other chemical transformations requiring high selectivity.

4.
ACS Appl Mater Interfaces ; 16(7): 8903-8912, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324390

RESUMO

Developing efficient oxygen evolution catalysts (OECs) made from earth-abundant elements is extremely important since the oxygen evolution reaction (OER) with sluggish kinetics hinders the development of many energy-related electrochemical devices. Herein, an efficient strategy is developed to prepare conjugated microporous polymers (CMPs) with abundant and uniform coordination sites by coupling the N-rich organic monomer 2,4,6-tris(5-bromopyrimidin-2-yl)-1,3,5-triazine (TBPT) with Co(II) porphyrin. The resulting CMP-Py(Co) is further metallized with Co2+ ions to obtain CMP-Py(Co)@Co. Structural characterization results reveal that CMP-Py(Co)@Co has higher Co2+ content (12.20 wt %) and affinity toward water compared with CMP-Py(Co). Moreover, CMP-Py(Co)@Co exhibits an excellent OER activity with a low overpotential of 285 mV vs RHE at 10 mA cm-2 and a Tafel slope of 80.1 mV dec-1, which are significantly lower than those of CMP-Py(Co) (335 mV vs RHE and 96.8 mV dec-1). More interestingly, CMP-Py(Co)@Co outperforms most reported porous organic polymer-based OECs and the benchmark RuO2 catalyst (320 mV vs RHE and 87.6 mV dec-1). Additionally, Co2+-free CMP-Py(2H) has negligible OER activity. Thereby, the enhanced OER activity of CMP-Py(Co)@Co is attributed to the incorporation of Co2+ ions leading to rich active sites and enlarged electrochemical surface areas. Density functional theory (DFT) calculations reveal that Co2+-TBPT sites have higher activity than Co2+-porphyrin sites for the OER. These results indicate that the introduction of rich active metal sites in stable and conductive CMPs could provide novel guidance for designing efficient OECs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA