Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.633
Filtrar
1.
Biomed Opt Express ; 15(9): 5143-5161, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39296391

RESUMO

Reactive lymphocytes may indicate diseases such as viral infections. Identifying these abnormal lymphocytes is crucial for disease diagnosis. Currently, reactive lymphocytes are mainly manually identified by pathological experts with microscopes and morphological knowledge, which is time-consuming and laborious. Some studies have used convolutional neural networks (CNNs) to identify peripheral blood leukocytes, but there are limitations in the small receptive field of the model. Our model introduces a transformer based on CNN, expands the receptive field of the model, and enables it to extract global features more efficiently. We also enhance the generalization ability of the model through virtual adversarial training (VAT) without changing the parameters of the model. Finally, our model achieves an overall accuracy of 93.66% on the test set, and the accuracy of reactive lymphocytes also reaches 88.03%. This work takes another step toward the efficient identification of reactive lymphocytes.

2.
J Appl Microbiol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317668

RESUMO

AIMS: Volatile organic compounds (VOCs) have an important function in plant growth-promoting rhizobacteria (PGPR) development and plant growth. This study aimed to identify VOCs of the PGPR strain, Stutzerimonas stutzeri NRCB010, and investigate their effects on NRCB010 biofilm formation, swarming motility, colonization, and tomato seedling growth. METHODS AND RESULTS: Solid-phase microextraction and gas chromatography-mass spectrometry were performed to identify the VOCs produced during NRCB010 fermentation. 28 VOCs were identified. Among them, seven (e.g. γ-valerolactone, 3-octanone, mandelic acid, 2-heptanone, methyl palmitate, S-methyl thioacetate, and 2,3-heptanedione), which smell well, are beneficial for plant, or as food additives, and without serious toxicities were selected to evaluate their effects on NRCB010 and tomato seedling growth. It was found that most of these VOCs positively influenced NRCB010 swarming motility, biofilm formation, and colonization, and the tomato seedling growth. Notably, γ-valerolactone and S-methyl thioacetate exhibited the most positive performances. CONCLUSION: The seven NRCB010 VOCs, essential for PGPR and crop growth, are potential bioactive ingredients within microbial fertilizer formulations. Nevertheless, the long-term sustainability and replicability of the positive effects of these compounds across different soil and crop types, particularly under field conditions, require further investigation.

3.
Int J Biol Macromol ; : 135627, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306172

RESUMO

This study aims to investigate the properties of edible Pickering emulsions (PEs) stabilized by donkey myofibrillar protein (DMP). The DMP was characterized by an atomic force microscope and interfacial tensiometer. The PEs stabilized by DMP were characterized by a confocal laser scanning microscope, rheometer, and lumisizer stability analyzer. The results showed that the DMP particles were spherical nanoparticles with an average size of 143.97 nm. The DMP could reduce the oil-water interfacial tension very well. The emulsifying activity index was below 14.06 m2/g, and the emulsion stability index was up to 93.76 % when the DMP concentration was above 10 mg/ml. Increasing the concentration of DMP (5 mg/ml to 25 mg/ml) could decrease the emulsion droplet sizes and fluidity of the PEs and increase the viscoelasticity of the PEs. The increase in the oil-water ratio (1:9 to 5:5) resulted in a larger average emulsion droplet size, reduced fluidity, and enhanced viscoelasticity. The increase in DMP concentration (from 5 mg/ml to 25 mg/ml) and oil-water ratio (from 1:9 to 4:6) improved the physical stability of the PEs. These results may expand the application of DMP and provide new insight into developing edible PEs suitable for the formulation of functional foods.

4.
Radiol Case Rep ; 19(11): 5066-5070, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39253043

RESUMO

Gorham-Stout disease is a rare condition characterized by the massive osteolysis replaced with vascular or lymphatic proliferation and fibrous tissue. We report the case of a 13-year-old boy complaining of occasional lower back pain. Spinal X-ray showed scoliosis and pelvic asymmetry, CT and MRI revealed multiple osteolysis replaced by soft tissue without osteogenesis in lumbar vertebrae, sacrum, iliac bone, ischium and acetabulum and horseshoe kidney. Laboratory and clinical findings excluded all other potential causes of osteolysis and the patient was diagnosed as Gorham-Stout disease, although no lymphangioma or hemangioma were found in the specimen of right iliac bone. The report shows an unusual, multifocal Gorham-Stout disease in a 13-year-old boy with horseshoe kidney, suggesting that the typical imaging findings and raising awareness of the disease can facilitate timely diagnosis for the disease.

5.
Genes Dis ; 11(6): 101337, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39281834

RESUMO

Recent studies have explored the spatial transcriptomics patterns of Alzheimer's disease (AD) brain by spatial sequencing in mouse models, enabling the identification of unique genome-wide transcriptomic features associated with different spatial regions and pathological status. However, the dynamics of gene interactions that occur during amyloid-ß accumulation remain largely unknown. In this study, we performed analyses on ligand-receptor communication, transcription factor regulatory network, and spot-specific network to reveal the dependence and the dynamics of gene associations/interactions on spatial regions and pathological status with mouse and human brains. We first used a spatial transcriptomics dataset of the App NL-G-F knock-in AD and wild-type mouse model. We revealed 17 ligand-receptor pairs with opposite tendencies throughout the amyloid-ß accumulation process and showed the specific ligand-receptor interactions across the hippocampus layers at different extents of pathological changes. We then identified nerve function related transcription factors in the hippocampus and entorhinal cortex, as well as genes with different transcriptomic association degrees in AD versus wild-type mice. Finally, another independent spatial transcriptomics dataset from different AD mouse models and human single-nuclei RNA-seq data/AlzData database were used for validation. This is the first study to identify various gene associations throughout amyloid-ß accumulation based on spatial transcriptomics, establishing the foundations to reveal advanced and in-depth AD etiology from a novel perspective based on the comprehensive analyses of gene interactions that are spatio-temporal dependent.

6.
Nucleic Acids Res ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287137

RESUMO

RNA polymerase II (pol II) initiates transcription from transcription start sites (TSSs) located ∼30-35 bp downstream of the TATA box in metazoans, whereas in the yeast Saccharomyces cerevisiae, pol II scans further downstream TSSs located ∼40-120 bp downstream of the TATA box. Previously, we found that removal of the kinase module TFIIK (Kin28-Ccl1-Tfb3) from TFIIH shifts the TSS in a yeast in vitro system upstream to the location observed in metazoans and that addition of recombinant Tfb3 back to TFIIH-ΔTFIIK restores the downstream TSS usage. Here, we report that this biochemical activity of yeast TFIIK in TSS scanning is attributable to the Tfb3 RING domain at the interface with pol II in the pre-initiation complex (PIC): especially, swapping Tfb3 Pro51-a residue conserved among all fungi-with Ala or Ser as in MAT1, the metazoan homolog of Tfb3, confers an upstream TSS shift in vitro in a similar manner to the removal of TFIIK. Yeast genetic analysis suggests that both Pro51 and Arg64 of Tfb3 are required to maintain the stability of the Tfb3-pol II interface in the PIC. Cryo-electron microscopy analysis of a yeast PIC lacking TFIIK reveals considerable variability in the orientation of TFIIH, which impairs TSS scanning after promoter opening.

7.
Dalton Trans ; 53(36): 15190-15197, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39221584

RESUMO

Copper nanoclusters have attracted significant interest in the field of materials science due to their high abundance, complex structure, and unique properties. However, there is a limited amount of research on the relationship between structure and properties. In this study, we synthesized and comprehensively characterized two new Cu9 nanoclusters, [Cu9(PhSe)6(PPh2O2)3] (Cu9-1) and [Cu9(CH3OPhS)6(PPh2O2)3] (Cu9-2), in order to investigate the effect of ligands on photoluminescence. Both clusters have the same metal skeleton and similar distribution of ligands, with the only difference being the surface ligands (PhSe vs. CH3OPhS). Interestingly, the photoluminescence lifetime of Cu9-2 was found to be 3.2 times longer than that of Cu9-1. Furthermore, a notable Stokes shift (ST) was observed in the emission spectra of the two clusters. Single-crystal X-ray analysis revealed the formation of hydrogen bonds between neighboring clusters of Cu9-2, which influenced intramolecular interactions. Additionally, the methoxy groups in Cu9-2, acting as conjugated electron donors, promoted intramolecular charge transfer and π-π interaction. This study is expected to inspire further research on surface ligand engineering for controlling the properties of copper nanoclusters beyond photoluminescence.

8.
Int J Biol Macromol ; 278(Pt 4): 135404, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39256124

RESUMO

Numerous studies have established a strong association between Malassezia and various skin disorders, including atopic dermatitis. Finding appropriate methods or medications to alleviate Malassezia-induced skin damage is of notable public interest. This study aimed to evaluate the therapeutic effect of the exopolysaccharide EPS1, produced by Paenibacillus polymyxa, on Malassezia restricta-induced skin damage. In vitro assays indicated that EPS1 reduced the expression of pro-inflammatory cytokine genes in TNF-α-induced HaCaT cells. In a murine model, EPS1 was found to mitigate clinical symptoms, reduce epidermal thickness and mast cell infiltration, improve skin barrier function, decrease pro-inflammatory cytokine levels associated with type 17 inflammation, enhance Tregs in the spleen, upregulate the transcription of Treg-related genes in skin lesions, and modulate the skin microbiota. This study is the first to report the alleviating effect of Paenibacillus exopolysaccharide on Malassezia-induced skin inflammation and its impact on the skin microbiota. These findings support the potential of Paenibacillus exopolysaccharides as consumer products and therapeutic agents for managing Malassezia-induced skin damage by improving skin barrier function, modulating immune responses, and influencing skin microbiota.


Assuntos
Malassezia , Microbiota , Polissacarídeos Bacterianos , Pele , Malassezia/efeitos dos fármacos , Animais , Camundongos , Pele/microbiologia , Pele/efeitos dos fármacos , Pele/imunologia , Humanos , Polissacarídeos Bacterianos/farmacologia , Microbiota/efeitos dos fármacos , Citocinas/metabolismo , Paenibacillus , Modelos Animais de Doenças , Células HaCaT
9.
Chem Biol Drug Des ; 104(3): e14623, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39279715

RESUMO

Hepatocellular carcinoma (HCC) is a significant global health concern. However, there are limited effective treatments available for it. The use of natural products in the management and treatment of HCC is gaining more attention. Baicalein is a flavonoid compound that has been reported to have antitumor activities in HCC. However, the direct binding targets of baicalein are still unknown. Therefore, we used the DNA-programmed affinity labeling method to identify the target of baicalein and validated its function in HCC cells. We set blank and competitive DNA probes as negative controls. The results showed that baicalein had 136 binding targets, of which 13 targets were differently expressed in HCC tissues. The enriched cellular process of these targets was apoptosis, which involved MAPK9. We tested the binding affinity of baicalein with MAPK9 as 89.7 nM (Kd) by surface plasmon resonance and analyzed the binding sites by virtual docking. Notably, the binding of baicalein with MAPK9 increased the protein levels of MAPK9 itself and the related downstream apoptosis signaling, triggering the apoptosis of HCC cells. However, the inhibitor of MAPK9, SP600125, blocked the baicalein-induced apoptosis, and the amounts of MAPK9 and downstream molecules were also decreased, indicating that baicalein acted through MAPK9 to induce apoptosis of HCC cells. In conclusion, we used the DNA-programmed affinity labeling method to identify the direct-binding target MAPK9 of baicalein and validated its function in baicalein-induced apoptosis of HCC cells, which would be helpful to understand and use baicalein in HCC therapy.


Assuntos
Apoptose , Carcinoma Hepatocelular , Flavanonas , Neoplasias Hepáticas , Simulação de Acoplamento Molecular , Humanos , Antracenos/farmacologia , Antracenos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/metabolismo , Células Hep G2 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Ligação Proteica
10.
Lipids Health Dis ; 23(1): 279, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227809

RESUMO

BACKGROUND: NOD-like receptor protein 3 (NLRP3) inflammasome activation is indispensable for atherogenesis. Mitophagy has emerged as a potential strategy to counteract NLRP3 inflammasome activation triggered by impaired mitochondria. Our previous research has indicated that dihydromyricetin, a natural flavonoid, can mitigate NLRP3-mediated endothelial inflammation, suggesting its potential to treat atherosclerosis. However, the precise underlying mechanisms remain elusive. This study sought to investigate whether dihydromyricetin modulates endothelial mitophagy and inhibits NLRP3 inflammasome activation to alleviate atherogenesis, along with the specific mechanisms involved. METHODS: Apolipoprotein E-deficient mice on a high-fat diet were administered daily oral gavages of dihydromyricetin for 14 weeks. Blood samples were procured to determine the serum lipid profiles and quantify proinflammatory cytokine concentrations. Aortas were harvested to evaluate atherosclerotic plaque formation and NLRP3 inflammasome activation. Concurrently, in human umbilical vein endothelial cells, Western blotting, flow cytometry, and quantitative real-time PCR were employed to elucidate the mechanistic role of mitophagy in the modulation of NLRP3 inflammasome activation by dihydromyricetin. RESULTS: Dihydromyricetin administration significantly attenuated NLRP3 inflammasome activation and vascular inflammation in mice on a high-fat diet, thereby exerting a pronounced inhibitory effect on atherogenesis. Both in vivo and in vitro, dihydromyricetin treatment markedly enhanced mitophagy. This enhancement in mitophagy ameliorated the mitochondrial damage instigated by saturated fatty acids, thereby inhibiting the activation and nuclear translocation of NF-κB. Consequently, concomitant reductions in the transcript levels of NLRP3 and interleukin-1ß (IL-1ß), alongside decreased activation of NLRP3 inflammasome and IL-1ß secretion, were discerned. Notably, the inhibitory effects of dihydromyricetin on the activation of NF-κB and subsequently the NLRP3 inflammasome were determined to be, at least in part, contingent upon its capacity to promote mitophagy. CONCLUSION: This study suggested that dihydromyricetin may function as a modulator to promote mitophagy, which in turn mitigates NF-κB activity and subsequent NLRP3 inflammasome activation, thereby conferring protection against atherosclerosis.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Flavonóis , Células Endoteliais da Veia Umbilical Humana , Inflamassomos , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitofagia/efeitos dos fármacos , Animais , Flavonóis/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/patologia , Aterosclerose/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Camundongos , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos Endogâmicos C57BL , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
11.
Plant Sci ; 349: 112228, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218307

RESUMO

Members of the MT-A70 family are key catalytic proteins involved in m6A methylation modifications in plants. They play diverse roles at the posttranscriptional level by regulating RNA secondary structure, selective splicing, stability, and translational efficiency, which collectively affect plant growth, development, and stress responses. In this study, we explored the function of the gene SlMTC, a Class C member of the MT-A70 family, in tomatoes by using CRISPR/Cas9 technology. Compared with the wild-type (WT), the CR-slmtc mutants exhibited decreased seed size and slower growth rates during the seedling stage, along with weaker salt tolerance and significant downregulation of stress-related genes, such as PR1, PR5, and P5CS. The qRT-PCR results revealed that the expression levels of genes involved in auxin biosynthesis (FZY1, FZY3, and FZY4) and polar transport (PIN1, PIN4, and PIN8) were lower in CR-slmtc plants than in the WT plants. In addition, yeast two-hybrid assays showed that SlMTC could interact with SlMTA, a Class A member of the MT-A70 family, providing insights into the potential mode of action of SlMTC in tomatoes. Overall, our findings indicate the critical role of SlMTC in plant growth and development as well as in response to salt stress.

12.
Science ; 385(6713): eadk9217, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39236169

RESUMO

To identify cancer-associated gene regulatory changes, we generated single-cell chromatin accessibility landscapes across eight tumor types as part of The Cancer Genome Atlas. Tumor chromatin accessibility is strongly influenced by copy number alterations that can be used to identify subclones, yet underlying cis-regulatory landscapes retain cancer type-specific features. Using organ-matched healthy tissues, we identified the "nearest healthy" cell types in diverse cancers, demonstrating that the chromatin signature of basal-like-subtype breast cancer is most similar to secretory-type luminal epithelial cells. Neural network models trained to learn regulatory programs in cancer revealed enrichment of model-prioritized somatic noncoding mutations near cancer-associated genes, suggesting that dispersed, nonrecurrent, noncoding mutations in cancer are functional. Overall, these data and interpretable gene regulatory models for cancer and healthy tissue provide a framework for understanding cancer-specific gene regulation.


Assuntos
Cromatina , Regulação Neoplásica da Expressão Gênica , Neoplasias , Análise de Célula Única , Humanos , Cromatina/metabolismo , Cromatina/genética , Neoplasias/genética , Redes Neurais de Computação , Mutação , Variações do Número de Cópias de DNA , Neoplasias da Mama/genética , Neoplasias da Mama/patologia
14.
Foods ; 13(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39272619

RESUMO

The effects of replacing 5-25% of wheat flour (WF) with Taiwanese cocoa bean shells (CBSs) on the physicochemical, antioxidant, starch digestion, and sensory properties of the bread were studied. The lead (0.18) and cadmium (0.77) contents (mg/kg) of the CBSs were below the Codex Alimentarius specifications for cocoa powder. Ochratoxin A and aflatoxins (B1, B2, G1, and G2) were not detected in the CBSs. The CBSs were rich in dietary fiber (42.9%) and bioactive components and showed good antioxidant capacity. The ash, fat, protein, dietary fiber, crumb a* and c*, hardness, chewiness, total phenols, and antioxidant activities of the bread increased with an increasing CBSs level. The starch hydrolysis rate (45.1-36.49%) of the CBS breads at 180 min was lower than that of the control (49.6%). The predicted glycemic index of the bread (CBS20 and CBS25) with 20-25% of the WF replaced with CBSs was classified as a medium-GI food using white bread as a reference. In the nine-point hedonic test, the overall preference scores were highest for control (6.8) and CBS breads, where CBSs replaced 5-10% of WF, with scores of 7.2 and 6.7. CBS20 supplemented with an additional 20-30% water improved its volume, specific volume, and staling rate, but the overall liking score (6.5-7.2) was not significantly different from the control (p > 0.05). Overall, partially replacing wheat flour with CBSs in the production of baked bread can result in a new medium-GI value food containing more dietary fiber, bioactive compounds, and enhanced antioxidant capacity.

15.
Gene ; 933: 148939, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278373

RESUMO

BACKGROUND AND OBJECTIVES: Genome-wide association studies (GWASs) have identified numerous candidate genes for human brain-imaging phenotypes; however, the biological relevance of many of these genes remains unconfirmed. This study aimed to investigate the causal relationships among tescalcin (TESC) (a GWAS-indicated gene), hippocampal volume, Alzheimer's disease (AD), and the underlying biological mechanisms. METHODS: Human transcriptional data were analyzed to confirm relative TESC expression in the hippocampus. In cell experiments, RNA-seq analysis was used to identify the potential biological pathways for TESC overexpression, and immunofluorescence imaging and cell viability assays were used to evaluate the effect of TESC overexpression on neuronal structure and survival. In animal experiments, the effects of TESC overexpression on hippocampal volume and cognitive function in normal mice and amyloid-ß (Aß)-induced AD mice were investigated by 9.4 T magnetic resonance imaging and behavioral tests. Underlying mechanisms were further assessed via western blotting and electrophysiological recordings. RESULTS: Human transcriptional data demonstrated that TESC is primarily expressed in the hippocampus and neurons. TESC overexpression enhanced the viability of HT22 cells and reduced Aß-induced cell death. In mouse models, Tesc-overexpressing mice revealed increased hippocampal volume, likely owing to enhanced cell viability and long-term potentiation (LTP), and reducing apoptotic- and oxidation-induced hippocampal damage. TESC overexpression could significantly mitigate Aß-induced hippocampal atrophy and memory impairment, potentially by reducing Aß-induced neuronal apoptosis and LTP weakening. CONCLUSION: This study exemplifies the translation of GWAS findings into actionable biological knowledge and suggests that upregulation of TESC may offer a promising therapeutic strategy for AD.

16.
IEEE Trans Med Imaging ; PP2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283781

RESUMO

Psychiatric diseases are bringing heavy burdens for both individual health and social stability. The accurate and timely diagnosis of the diseases is essential for effective treatment and intervention. Thanks to the rapid development of brain imaging technology and machine learning algorithms, diagnostic classification of psychiatric diseases can be achieved based on brain images. However, due to divergences in scanning machines or parameters, the generalization capability of diagnostic classification models has always been an issue. We propose Meta-learning with Meta batch normalization and Distance Constraint (M2DC) for training diagnostic classification models. The framework can simulate the train-test domain shift situation and promote intra-class cohesion, as well as inter-class separation, which can lead to clearer classification margins and more generalizable models. To better encode dynamic brain graphs, we propose a concatenated spatiotemporal attention graph isomorphism network (CSTAGIN) as the backbone. The network is trained for the diagnostic classification of major depressive disorder (MDD) based on multi-site brain graphs. Extensive experiments on brain images from over 3261 subjects show that models trained by M2DC achieve the best performance on cross-site diagnostic classification tasks compared to various contemporary domain generalization methods and SOTA studies. The proposed M2DC is by far the first framework for multi-source closed-set domain generalizable training of diagnostic classification models for MDD and the trained models can be applied to reliable auxiliary diagnosis on novel data.

17.
Plant Physiol Biochem ; 215: 109008, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39226760

RESUMO

Transcription factors (TFs) are crucial for regulating fruit ripening in tomato (Solanum lycopersicum). The GRAS (GAI, RGA, and SCR) TFs are involved in various physiological processes, but their role in fruit ripening has seldom been reported. We have previously identified a gene encoding GRAS protein named SlFSR (Fruit Shelf-life Regulator), which is implicated in fruit ripening by regulating cell wall metabolism; however, the underlying mechanism remains unclear. Here, we demonstrate that SlFSR proteins are localized to the nucleus, where they could bind to specific DNA sequences. SlFSR acts downstream of the master ripening regulator RIN and could collaborate with RIN to control the ripening process by regulating expression of ethylene biosynthesis genes. In SlFSR-CR (CRISPR/Cas9) mutants, the initiation of fruit ripening was not affected but the reduced ethylene production and a delayed coloring process occurred. RNA-sequencing (RNA-seq) and promoter analysis reveal that SlFSR directly binds to the promoters of two key ethylene biosynthesis genes (SlACO1 and SlACO3) and activates their expression. However, SlFSR-CR fruits displayed a significant down-regulation of key rate-limiting genes (SlDXS1 and SlGGPPS2) in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, which may account for the impaired lycopene synthesis. Altogether, we propose that SlFSR positively regulates ethylene biosynthesis and lycopene accumulation, providing valuable insights into the molecular mechanisms underlying fruit ripening.


Assuntos
Etilenos , Frutas , Regulação da Expressão Gênica de Plantas , Licopeno , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Etilenos/metabolismo , Etilenos/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Licopeno/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
18.
Front Neurol ; 15: 1417357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268071

RESUMO

Background: Metabolomics is increasingly being utilized in IS research to elucidate the intricate metabolic alterations that occur during ischemic stroke (IS). However, establishing causality in these associations remains unclear between metabolites and IS subtypes. In this study, we employ Mendelian randomization (MR) to identify specific metabolites and investigate potential causal relationships between metabolites and IS subtypes. Methods: MR analysis was conducted using genome-wide association study (GWAS) summary data. We obtained 1,091 blood metabolites and 309 metabolite ratios from the GWAS Catalog (GCST90199621-90201020), which gene sequencing data from 8,299 individuals from the Canadian Longitudinal Study. We obtained GWAS summary statistics for IS subtypes which include large artery stroke (LAS), cardioembolic stroke (CES), and small vessel stroke (SVS) from the MEGASTROKE consortium that included 446,696 cases of European ancestry and 406,111 controls of European ancestry. The primary analysis utilized inverse-variance weighted (IVW) method. To validate our results, we performed supplementary analyses employing the MR-Egger, weighted median, simple mode, and weighted mode methods. Heterogeneity and pleiotropy were assessed through Cochran's Q test, MR-Egger intercept test, and leave-one-out analysis. Results: The study assessed the possible causality of serum metabolites in the risk of IS subtypes. The discovery of significant causal links between 33 metabolites and 3 distinct IS subtypes. Conclusion: Metabolites show significant potential as circulating metabolic biomarkers and offer promise for clinical applications in the prevention and screening of IS subtypes. These discoveries notably advance our comprehension of the molecular processes specific to IS subtypes and create avenues for investigating targeted treatment approaches in the future.

19.
Int J Nanomedicine ; 19: 9121-9143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258004

RESUMO

Purpose: Erythrocytes and fibroblasts in the pancreatic cancer tumor microenvironment promote tumor cell growth and invasion by providing nutrients and promoting immunosuppression. Additionally, they form a barrier against the penetration of chemotherapeutic drugs. Therefore, the search for diversified tumor-targeting materials plays an essential role in solving the above problems. Methods: Physicochemical characterization of Graphene fluorescent nanoparticles (GFNPs) and nanomedicines were analyzed by transmission electron microscopy (TEM), elemental analyzers and ultraviolet fluorescence (UV/FL) spectrophotometer. Localization of GFNPs in cell and tissue sections imaged with laser confocal microscope, fluorescence scanner and small animal in vivo imager. Qualitative detection and quantitative detection of GFNPs and GFNPs-GEM were performed using High performance liquid chromatography (HPLC). Results: Based on the 3 nm average dimensions, GFNPs penetrate vascular endothelial cells and smooth muscle cells, achieve up to label 30% tumor cells and 60% cancer-associated fibroblasts (CAFs) cells, and accurately label mature red blood cells in the tumor microenvironment. In orthotopic transplanted pancreatic cancer models, the fluorescence intensity of GFNPs in tumors showed a positive correlation with the cycle size of tumor development. The differential spatial distribution of GFNPs in three typical clinical pancreatic cancer samples demonstrated their diagnostic potential. To mediate the excellent targeting properties of GFNPs, we synthesized a series of nanomedicines using popular chemotherapeutic drugs, in which complex of GFNPs and gemcitabine (GFNPs-GEM) possessed stability in vivo and exhibited effective reduction of tumor volume and fewer side effects. Conclusion: GFNPs with multiple targeting tumor microenvironments in pancreatic cancer possess diagnostic efficiency and therapeutic potential.


Assuntos
Desoxicitidina , Gencitabina , Grafite , Nanopartículas , Neoplasias Pancreáticas , Microambiente Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Nanopartículas/química , Linhagem Celular Tumoral , Humanos , Camundongos , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacologia , Desoxicitidina/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Grafite/química , Nanomedicina , Fibroblastos Associados a Câncer/efeitos dos fármacos , Modelos Animais de Doenças
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167469, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39153664

RESUMO

Premature ovarian insufficiency (POI) critically affects female reproductive health, with obesity being a significant and recognized risk factor. Interleukin-27 (IL-27), known for its role in immune modulation and inflammation, has garnered attention in metabolic syndrome research. Nonetheless, the role of these immunometabolic factors on the initiation of POI remains to be unraveled. Our investigation delves into the influence of impaired IL-27 signaling on POI induction, particularly under the challenge of a high-fat diet (HFD). We analyzed patients' serum profiles and established a correlation of increased serum triglycerides with decreased IL-27 levels in POI cases. Experiments on C57BL/6 mice lacking the IL-27 receptor alpha (Il27ra-/-) revealed that when subjected to HFD, these mice developed hallmark POI symptoms. This includes escalated lipid deposition in both liver and ovarian tissues, increased ovarian macrophages cellular aging, and diminished follicle count, all pointing to compromised ovarian function. These findings unveil a novel pathway wherein impaired IL-27 signaling potentiates the onset of POI in the presence of HFD. Understanding the intricate interplay between IL-27, metabolic alterations, and immune dysregulation sheds light on potential therapeutic avenues for managing POI, offering hope for improved reproductive health outcomes.


Assuntos
Dieta Hiperlipídica , Macrófagos , Insuficiência Ovariana Primária , Receptores de Interleucina , Transdução de Sinais , Adulto , Animais , Feminino , Humanos , Camundongos , Senescência Celular , Dieta Hiperlipídica/efeitos adversos , Interleucinas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário/metabolismo , Ovário/patologia , Insuficiência Ovariana Primária/patologia , Insuficiência Ovariana Primária/metabolismo , Insuficiência Ovariana Primária/imunologia , Receptores de Interleucina/metabolismo , Receptores de Interleucina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA