Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1011948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300972

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus, prevalent in more than 30 countries worldwide. Human infection by this virus leads to severe illness, with an average case fatality of 40%. There is currently no approved vaccine or drug to treat the disease. Neutralizing antibodies are a promising approach to treat virus infectious diseases. This study generated 37 mouse-derived specific monoclonal antibodies against CCHFV Gc subunit. Neutralization assays using pseudotyped virus and authentic CCHFV identified Gc8, Gc13, and Gc35 as neutralizing antibodies. Among them, Gc13 had the highest neutralizing activity and binding affinity with CCHFV Gc. Consistently, Gc13, but not Gc8 or Gc35, showed in vivo protective efficacy (62.5% survival rate) against CCHFV infection in a lethal mouse infection model. Further characterization studies suggested that Gc8 and Gc13 may recognize a similar, linear epitope in domain II of CCHFV Gc, while Gc35 may recognize a different epitope in Gc. Cryo-electron microscopy of Gc-Fab complexes indicated that both Gc8 and Gc13 bind to the conserved fusion loop region and Gc13 had stronger interactions with sGc-trimers. This was supported by the ability of Gc13 to block CCHFV GP-mediated membrane fusion. Overall, this study provides new therapeutic strategies to treat CCHF and new insights into the interaction between antibodies with CCHFV Gc proteins.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Camundongos , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Anticorpos Monoclonais , Microscopia Crioeletrônica , Anticorpos Neutralizantes , Epitopos
2.
J Org Chem ; 88(19): 13967-13976, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37733950

RESUMO

A novel and efficient tandem SN2 nucleophilic substitution/Dieckmann condensation reaction of α-iodomethyl phosphine oxide with methyl thiosalicylate derivatives has been developed by using NaOH as a base, which enables the expeditious synthesis of 2-phosphonyl-3-hydroxybenzo[b]thiophene derivatives in moderate to high yields under simple conditions. This research provides not only a convenient method for the functionalization of benzo[b]thiophenes at the 2-position and 3-position but also new organophosphorus molecules. Furthermore, several new phosphonyl-substituted benzo[b]thiophenes were obtained from the resultant 2-phosphonyl-3-hydroxybenzo[b]thiophenes.

3.
Biomolecules ; 12(6)2022 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-35740974

RESUMO

Stroke is a leading threat to human life. Metabolic dysfunction of glucose may play a key role in stroke pathophysiology. Pharmacological hypothermia (PH) is a potential neuroprotective strategy for stroke, in which the temperature is decreased safely. The present study determined whether neuroprotective PH with chlorpromazine and promethazine (C + P), plus dihydrocapsaicin (DHC) improved glucose metabolism in acute ischemic stroke. A total of 208 adult male Sprague Dawley rats were randomly divided into the following groups: sham, stroke, and stroke with various treatments including C + P, DHC, C + P + DHC, phloretin (glucose transporter (GLUT)-1 inhibitor), cytochalasin B (GLUT-3 inhibitor), TZD (thiazolidinedione, phosphoenolpyruvate carboxykinase (PCK) inhibitor), and apocynin (nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor). Stroke was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 6 or 24 h of reperfusion. Rectal temperature was monitored before, during, and after PH. Infarct volume and neurological deficits were measured to assess the neuroprotective effects. Reactive oxygen species (ROS), NOX activity, lactate, apoptotic cell death, glucose, and ATP levels were measured. Protein expression of GLUT-1, GLUT-3, phosphofructokinase (PFK), lactate dehydrogenase (LDH), PCK1, PCK2, and NOX subunit gp91 was measured with Western blotting. PH with a combination of C + P and DHC induced faster, longer, and deeper hypothermia, as compared to each alone. PH significantly improved every measured outcome as compared to stroke and monotherapy. PH reduced brain infarction, neurological deficits, protein levels of glycolytic enzymes (GLUT-1, GLUT-3, PFK and LDH), gluconeogenic enzymes (PCK1 and PCK2), NOX activity and its subunit gp91, ROS, apoptotic cell death, glucose, and lactate, while raising ATP levels. In conclusion, stroke impaired glucose metabolism by enhancing hyperglycolysis and gluconeogenesis, which led to ischemic injury, all of which were reversed by PH induced by a combination of C + P and DHC.


Assuntos
Hipotermia , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Trifosfato de Adenosina/metabolismo , Animais , Clorpromazina , Gluconeogênese , Glucose , Hipotermia/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Lactatos , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Acidente Vascular Cerebral/metabolismo
4.
Mol Neurobiol ; 58(5): 2309-2321, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417227

RESUMO

To demonstrate the role of the rate-limiting and ATP-dependent gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK) in oxidative and lactic stress and the effect of phenothiazine on PCK after stroke, a total of 168 adult male Sprague Dawley rats (3 months old, 280-300 g) underwent 2-h intraluminal middle cerebral artery occlusion (MCAO) and reperfusion for 6, 24, 48 h, or 7 days. Phenothiazine (chlorpromazine and promethazine (C+P)) (8 mg/kg) and 3-mercaptopicolinic acid (3-MPA, a PCK inhibitor, 100 µM) were administered at reperfusion onset. The effects of phosphoenolpyruvate, 3-MPA, or PCK knockdown were studied in neuronal cultures subjected to oxygen/glucose deprivation. Reactive oxygen species, lactate, phosphoenolpyruvate (PEP; a gluconeogenic product), mRNA, and protein of total PCK, PCK-1, and PCK-2 increased after MCAO and oxygen-glucose deprivation (OGD). Oxaloacetate (a gluconeogenic substrate) decreased, while PEP and glucose were increased, suggesting reactive gluconeogenesis. These changes were attenuated by phenothiazine, 3-MPA, or PCK shRNA. PCK-1 and -2 existed primarily in neurons, while the effects of ischemic stroke on the PCK expression were seen predominately in astrocytes. Thus, phenothiazine reduced infarction and oxidative/lactic stress by inhibiting PCKs, leading to functional recovery.


Assuntos
Encéfalo/metabolismo , Gluconeogênese/fisiologia , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Masculino , Fenotiazinas/farmacologia , Ácidos Picolínicos/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
5.
Brain Sci ; 9(12)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847503

RESUMO

Phenothiazine treatment has been shown to reduce post-stroke ischemic injury, though the underlying mechanism remains unclear. This study sought to confirm the neuroprotective effects of phenothiazines and to explore the role of the NOX (nicotinamide adenine dinucleotide phosphate oxidase)/Akt/PKC (protein kinase C) pathway in cerebral apoptosis. Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO) for 2 h and were randomly divided into 3 different cohorts: (1) saline, (2) 8 mg/kg chlorpromazine and promethazine (C+P), and (3) 8 mg/kg C+P as well as apocynin (NOX inhibitor). Brain infarct volumes were examined, and cell death/NOX activity was determined by assays. Western blotting was used to assess protein expression of kinase C-δ (PKC-δ), phosphorylated Akt (p-Akt), Bax, Bcl-XL, and uncleaved/cleaved caspase-3. Both C+P and C+P/NOX inhibitor administration yielded a significant reduction in infarct volumes and cell death, while the C+P/NOX inhibitor did not confer further reduction. In both treatment groups, anti-apoptotic Bcl-XL protein expression generally increased, while pro-apoptotic Bax and caspase-3 proteins generally decreased. PKC protein expression was decreased in both treatment groups, demonstrating a further decrease by C+P/NOX inhibitor at 6 and 24 h of reperfusion. The present study confirms C+P-mediated neuroprotection and suggests that the NOX/Akt/PKC pathway is a potential target for efficacious therapy following ischemic stroke.

6.
Neural Regen Res ; 14(6): 948-953, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30761998

RESUMO

Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under normal circumstances, reactive oxygen species mediate a number of important cellular functions, including the facilitation of adaptive immunity. In pathogenic circumstances, however, excess reactive oxygen species generated by NOX promotes apoptotic cell death. In ischemic stroke, in particular, it has been shown that both NOX activation and derangements in glucose metabolism result in increased apoptosis. Moreover, recent studies have established that glucose, as a NOX substrate, plays a vital role in the pathogenesis of reperfusion injury. Thus, NOX inhibition has the potential to mitigate the deleterious impact of hyperglycemia on stroke. In this paper, we provide an overview of this research, coupled with a discussion of its implications for the development of NOX inhibition as a strategy for the treatment of ischemic stroke. Both inhibition using apocynin, as well as the prospect of developing more specific inhibitors based on what is now understood of the biology of NOX assembly and activation, will be highlighted in the course of our discussion.

7.
Cell Transplant ; 28(3): 318-327, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30666889

RESUMO

In vitro liver conservation is an issue of ongoing critical importance in graft transplantation. In this study, we investigated the possibility of augmenting the standard pre-transplant liver conservation protocol (University of Wisconsin (UW) cold solution) with the phenothiazines chlorpromazine and promethazine. Livers from male Sprague-Dawley rats were preserved either in UW solution alone, or in UW solution plus either 2.4, 3.6, or 4.8 mg chlorpromazine and promethazine (C+P, 1:1). The extent of liver injury following preservation was determined by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, the ratio of AST/ALT, morphological changes as assessed by hematoxylin-eosin staining, apoptotic cell death as determined by ELISA, and by expression of the apoptotic regulatory proteins BAX and Bcl-2. Levels of glucose (GLU) and lactate dehydrogenase (LDH) in the preservation liquid were determined at 3, 12, and 24 h after incubation to assess glucose metabolism. Oxidative stress was assessed by levels of superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA), and inflammatory cytokine expression was evaluated with Western blotting. C+P augmentation induced significant reductions in ALT and AST activities; the AST/ALT ratio; as well as in cellular swelling, vacuolar degeneration, apoptosis, and BAX expression. These changes were associated with lowered levels of GLU and LDH; decreased expression of SOD, MDA, ROS, TNF-α, and IL-1ß; and increased expression of Bcl-2. We conclude that C+P augments hypothermic preservation of liver tissue by protecting hepatocytes from ischemia-induced oxidative stress and metabolic dysfunction. This result provides a basis for improvement of the current preservation strategy, and thus for the development of a more effective graft conservation method.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Preservação de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Fenotiazinas/farmacologia , Animais , Hipóxia Celular , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/citologia , Masculino , Soluções para Preservação de Órgãos/farmacologia , Projetos Piloto , Ratos , Ratos Sprague-Dawley
8.
Aging Dis ; 9(3): 467-479, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29896434

RESUMO

Splenectomy before or immediately after stroke provides early brain protection. This study aims to explore the effect of splenectomy on long-term neurological recovery after stroke, which is currently lacking in the field. Adult male rats were randomized into splenectomy or sham groups and then subjected to 90 min of middle cerebral artery occlusion (MCAO). Spleen was removed right upon reperfusion or 3d after MCAO. Infarct volume, neurological functions, and peripheral immune cell populations were assessed up to 28d after stroke. The results show that delayed removal of spleen did not reduce brain tissue loss and showed no effect on sensorimotor function (Rotarod, beam balance, forelimb placing, grid walk, and adhesive removal tests) or cognitive function (Morris water maze). Spleen removal immediately upon reperfusion, although significantly reduced the infarct size and immune cell infiltration 3d after MCAO, also failed to promote long-term recovery. Flow cytometry analysis demonstrated that immediate splenectomy after MCAO resulted in a prolonged decrease in the percentage of CD3+CD4+ and CD3+CD8+ T cells in total lymphocytes as compared to non-splenectomy MCAO rats. In contrast, the percentage of CD3-CD45RA+ B cells was significantly elevated after splenectomy. As a result, the ratio of T/B cells was significantly reduced in stroke rats with splenectomy. In conclusion, delayed splenectomy failed to provide long-term protection to the ischemic brain or improve functional recovery. The acute neuroprotective effect achieved by early splenectomy after stroke cannot last for long term. This loss of neuroprotection might be related to the prolonged disturbance in the T cell to B cell ratio.

9.
Neurol Res ; 40(6): 499-507, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29576013

RESUMO

Objectives Intracranial atherosclerotic stenosis (ICAS) is one of the most common causes of stroke worldwide. We adapted a rat model of atherosclerosis to study brain intracranial atherosclerosis, and further investigated how omega-3 fatty acids (O3FA) attenuated the development of ICAS by reducing the generation of reactive oxygen species (ROS) and the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity. Methods Adult male Sprague-Dawley rats were divided into control normal-cholesterol or high-cholesterol diet groups with or without O3FA for up to 6 weeks. NG-nitro-L-arginine methyl ester (L-NAME, 3 mg/mL), a nitric oxide synthase inhibitor, was added to the drinking water of the high-cholesterol groups during the first 2 weeks. The rats received supplementation with O3FA (5 mg/kg/day) by gavage. At 3 and 6 weeks, we measured blood lipid levels, including low-density lipoprotein (LDL), cholesterol (CHO), triglycerides (TG), and high-density lipoprotein (HDL) as atherosclerotic blood markers. The lumen of middle cerebral artery (MCA) and the thickness of the vessel wall were assessed histologically. ROS production was measured. NOX activity and mRNA and protein expression of NOX subunits (p47phox, gp91phox, p22phox, and p67phox) were measured. Results A high-cholesterol diet exhibited a significant increase in the classic blood markers (LDL, CHO, and TG) for atherosclerosis, as well as a decrease in HDL. These markers were found to be progressively more severe with time. Additionally, increased lumen stenosis and intimal thickening were observed in the MCA for this group. Rats given O3FA demonstrated attenuation of blood lipid levels with an absence of morphological changes.O3FA significantly reduced ROS production and NOX activity in the brain. Moreover, O3FA decreased the mRNA and protein expression of the NOX subunits p47phox, gp91phox, and p67phox. Conclusions Long-term O3FA dietary supplementation prevents the development of intracranial atherosclerosis. This O3FA effect appears to be mediated by its attenuation of NOX subunit expression and NOX activity, therefore reducing ROS production. O3FA dietary supplement shows promising results in the prevention of ICAS.


Assuntos
Encéfalo/enzimologia , Ácidos Graxos Ômega-3/uso terapêutico , Arteriosclerose Intracraniana/dietoterapia , Arteriosclerose Intracraniana/enzimologia , NADPH Oxidases/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Constrição Patológica/dietoterapia , Constrição Patológica/enzimologia , Constrição Patológica/patologia , Modelos Animais de Doenças , Arteriosclerose Intracraniana/patologia , Lipídeos/sangue , Masculino , Microvasos/enzimologia , Microvasos/patologia , Artéria Cerebral Média/enzimologia , Artéria Cerebral Média/patologia , Tamanho do Órgão , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
10.
Oncotarget ; 9(3): 3765-3778, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423081

RESUMO

BACKGROUND: Intracranial atherosclerosis (ICA) a major health problem. This study investigated whether inhalation of fine airborne particulate matters (PM2.5) causes ICA and whether omega-3 fatty acids (O3FA) attenuated the development of ICA. RESULTS: Twelve but not 6 week exposure significantly increased triglycerides (TG) in normal chow diet (NCD), while PM2.5 enhanced all lipid profiles (TG, low density lipoprotein (LDL) and cholesterol (CHO)) after both 6 and 12-week exposure with high-cholesterol diet (HCD). PM2.5 exposure for 12 but not 6 weeks significantly induced middle cerebral artery (MCA) narrowing and thickening, in association with the enhanced expression of inflammatory cytokines, (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interferon gamma (IFN-γ)), vascular cell adhesion molecule 1 (VCAM-1) and inducible nitric oxide synthase (iNOS). O3FA significantly attenuated vascular alterations, even without favorable changes in lipid profiles, in association with reduced expression of IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS in brain vessels. CONCLUSIONS: PM2.5 exposure for 12 weeks aggravates ICA in a dietary model (HCD + short-term L-NAME), which may be mediated by vascular inflammation. O3FA dietary supplementation prevents ICA development and inflammatory reaction in cerebral vessels. METHODS: Adult Sprague-Dawly rats were under filtered air (FA) or PM2.5 exposure with NCD or HCD for 6 or 12 weeks. Half of the HCD rats were treated with O3FA (5 mg/kg/day) by gavage. A total of 600 mg NG-nitro-L-arginine methyl ester (L-NAME, 3 mg/mL) per rat was administered over two weeks as supplementation in the HCD group. Blood lipids, including LDL, CHO, TG and high density lipoprotein (HDL), were measured at 6 and 12 weeks. ICA was determined by lumen diameter and thickness of the MCA. Inflammatory markers, IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS were assessed by real-time PCR for mRNA and Western blot for protein expression.

12.
Neurol Res ; 39(6): 530-537, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28415917

RESUMO

OBJECTIVES: The rehabilitative benefits of physical exercise after stroke appear to be contingent upon exercise initiation timing. The present study assessed the hypothesis that very early post-stroke exercise would amplify cellular stress and increases expression of pro-inflammatory mediators, while exercise initiated later would limit the inflammation associated with cerebral ischemia/reperfusion injury. METHODS: Adult rats were subjected to middle cerebral artery occlusion and subsequently assigned to one of seven groups: one sham injury control group, three stroke groups subjected to exercise initiated after 6, 24 hours, or 3 days of reperfusion, and three stroke groups not subjected to exercise. Expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule (VCAM-1), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) were examined 3 and 24 hours after completion of exercise regimens (and at corresponding time points in non-exercise controls). Heat shock protein-70 (Hsp70) and hypoxia inducible factor-1α (HIF-1α) expression levels were also compared between exercise and non-exercise groups. RESULTS: Early post-stroke exercise was associated with increased expression of pro-inflammatory mediators (ICAM-1, VCAM-1, TNF-α, and IL-1ß) and increased expression of cell stress markers (Hsp70 and HIF-1α). Exercise initiated after 3 days of reperfusion was associated with decreased expression of these molecules. CONCLUSION: Post-stroke exercise, if too early, may result in elevated levels of cell stress and increased expression of pro-inflammatory cytokines, which may amplify the tissue damage associated with cerebral ischemia/reperfusion injury. The results shed light on the manner in which exercise initiation timing may affect post-stroke rehabilitation.


Assuntos
Traumatismo por Reperfusão/metabolismo , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Interleucina-1beta/metabolismo , Masculino , Condicionamento Físico Animal , Ratos Sprague-Dawley , Traumatismo por Reperfusão/reabilitação , Acidente Vascular Cerebral/metabolismo
13.
J Neurosci Res ; 95(4): 1017-1024, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27571707

RESUMO

The effectiveness of the rehabilitative benefits of physical exercise appears to be contingent upon when the exercise is initiated after stroke. The present study assessed the hypothesis that very early exercise increases the extent of apoptotic cell death via increased expression of proapoptotic proteins in a rat stroke model. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 hr using an intraluminal filament and assigned to four nonexercise and three exercise groups. Exercise on a Rota-Rod was initiated for 30 min at 6 hr (considered very early), at 24 hr (early), and at 3 days (relatively late) after reperfusion. At 24 hr after exercise, apoptotic cell death was determined. At 3 and 24 hr after exercise, the expression of pro- and antiapoptotic proteins was evaluated through Western blotting. As expected, ischemic stroke significantly increased the levels of apoptotic cell death. Compared with the stroke group without exercise, apoptotic cell death was further increased (P < 0.05) at 6 hr but not at 24 hr or 3 days with exercise. This exacerbated cell injury was associated with increased expression of proapoptotic proteins (BAX and caspase-3). The expression of Bcl-2, an antiapoptotic protein, was not affected by exercise. In ischemic stroke, apoptotic cell death was enhanced by very early exercise in association with increased expression of proapoptotic proteins. These results shed light on the time-sensitive effect of exercise in poststroke rehabilitation. © 2016 Wiley Periodicals, Inc.


Assuntos
Apoptose/fisiologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/reabilitação , Terapia por Exercício/métodos , Análise de Variância , Animais , Caspase 3/metabolismo , Fragmentação do DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo
14.
Mol Neurobiol ; 54(10): 8140-8150, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27896650

RESUMO

Previous studies have demonstrated depressive or hibernation-like roles of phenothiazine neuroleptics [combined chlorpromazine and promethazine (C + P)] in brain activity. This ischemic stroke study aimed to establish neuroprotection by reducing oxidative stress and improving brain metabolism with post-ischemic C + P administration. Sprague-Dawley rats were subjected to transient (2 or 4 h) middle cerebral artery occlusion (MCAO) followed by 6 or 24 h reperfusion, or permanent (28 h) MCAO without reperfusion. At 2 h after ischemia onset, rats received either an intraperitoneal (IP) injection of saline or two doses of C + P. Body temperatures, brain infarct volumes, and neurological deficits were examined. Oxidative metabolism and stress were determined by levels of ATP, NADH, and reactive oxygen species (ROS). Protein kinase C-δ (PKC-δ) and Akt expression were determined by Western blotting. C + P administration induced a neuroprotection in both transient and permanent ischemia models evidenced by significant reduction in infarct volumes and neurological deficits post-stroke. C + P induced a dose-dependent reduction in body temperature as early as 5 min post-ischemia and lasted up to 12 h. However, reduction in body temperature either only slightly or did not enhance C + P-induced neuroprotection. C + P therapy improved brain metabolism as determined by increased ATP levels and NADH activity, as well as decreased ROS production. These therapeutic effects were associated with alterations in PKC-δ and Akt protein expression. C + P treatments conferred neuroprotection in severe stroke models by suppressing the damaging cascade of metabolic events, most likely independent of drug-induced hypothermia. These findings further prove the clinical potential for C + P treatment and may direct us closer towards the development of an efficacious neuroprotective therapy.


Assuntos
Clorpromazina/administração & dosagem , Ataque Isquêmico Transitório/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Prometazina/administração & dosagem , Índice de Gravidade de Doença , Acidente Vascular Cerebral/prevenção & controle , Animais , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
15.
Neuroscience ; 334: 226-235, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27522963

RESUMO

OBJECTIVES: Intracranial atherosclerotic stenosis (ICAS) is one of the most common causes of stroke worldwide and, in particular, has been implicated as a leading cause of recurrent ischemic stroke. We adapted a rat model of atherosclerosis to study brain intracranial atherosclerosis, and further investigated the effect of omega-3 fatty acids (O3FA) in attenuating development of ICAS. MATERIALS AND METHODS: Adult male Sprague-Dawley rats were divided into control normal-cholesterol or high-cholesterol diet groups with or without O3FA for up to 6weeks. During the first 2weeks, NG-nitro-l-arginine methyl ester (l-NAME, 3mg/mL) was added to the drinking water of the high-cholesterol groups. The rats received supplementation with O3FA (5mg/kg/day) by gavages. Blood lipids including low density lipoprotein (LDL), cholesterol (CHO), triglycerides (TG) and high density lipoprotein (HDL) were measured at 3 and 6weeks. The lumen of middle cerebral artery (MCA) and the thickness of the vessel wall were assessed. Inflammatory molecular markers were assessed by Western blot. RESULTS: A high-cholesterol diet exhibited a significant increase in the classic blood markers (LDL, CHO, and TG) for atherosclerosis, as well as a decrease in HDL. These markers were found to be progressively more severe with time. Lumen stenosis and intimal thickening were increased in MCA. O3FA showed attenuation of blood lipids with an absence of morphological changes. O3FA significantly reduced the inflammatory marker CD68 in MCA and prevented monocyte chemotactic protein (MCP-1) and interferon-γ (IFN-γ) expression in the brain. O3FA similarly decreased inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6), markers affiliated with monocyte activity in atherosclerosis. Furthermore, O3FA significantly inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1), a marker for endothelial activation. Lastly, O3FA increased ATP-binding cassette transporter A1 (ABCA1) protein expression via silent information regulator 1 (SIRT1) activation, thus increasing cholesterol efflux from macrophages to HDL. CONCLUSIONS: Long-term O3FA dietary supplementation prevents the development of intracranial atherosclerosis. This O3FA effect appears to be mediated by its prevention of macrophage infiltration into the vessel wall, therefore reducing inflammation and intimal thickening. While similar effects in humans need to be determined, O3FA dietary supplement shows promising results in the prevention of ICAS.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Arteriosclerose Intracraniana/prevenção & controle , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Western Blotting , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/patologia , Quimiocina CCL2/metabolismo , Colesterol/administração & dosagem , Colesterol/efeitos adversos , Colesterol/sangue , Constrição Patológica/sangue , Constrição Patológica/imunologia , Constrição Patológica/patologia , Constrição Patológica/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Interleucina-6/metabolismo , Arteriosclerose Intracraniana/sangue , Arteriosclerose Intracraniana/imunologia , Arteriosclerose Intracraniana/patologia , Masculino , Artéria Cerebral Média/patologia , Ratos Sprague-Dawley , Sirtuína 1/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
16.
Neurol Res ; 38(9): 817-22, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27477859

RESUMO

INTRODUCTION: Intracranial atherosclerotic stenosis (ICAS) is one of the most common causes of stroke worldwide and, in particular, has been implicated as a leading cause of recurrent ischemic stroke. We developed a new rat model to study intracranial atherosclerosis. METHODS: Twelve-week-old male Sprague-Dawley rats were divided into a control (on a maintain diet) and a high-cholesterol group (on a daily 1% cholesterol diet) for up to 6 weeks. During the first two weeks, NG-nitro-L-arginine methylester (L-NAME, 3 mg/mL) was added to the drinking water in the high-cholesterol group to induce intimal changes making the rats susceptible to atherosclerosis. Blood lipids, including low-density lipoprotein (LDL), cholesterol (CHO), triglycerides (TG), and high-density lipoprotein (HDL), were measured after 3 and 6 weeks. Histological sections of the brains, including internal carotid artery (ICA), middle cerebral artery (MCA), and basilar artery (BA), were prepared to study intracranial artery morphometry and intimal thickening. The levels of CD68, an inflammatory marker, within the vessel walls as determined by immunohistochemistry were also measured. RESULTS: The high-cholesterol diet increased the levels of classic blood markers of atherosclerosis, LDL, CHO, and TG as well as decreased HDL, which became progressively more intensive with time. Rats showed increased intimal thickening in the ICA, MCA, and BA. This protocol also increased the levels of CD68 immunoreactivity within the vessel walls. CONCLUSIONS: A rat model of intracranial atherosclerosis was effectively developed by high-cholesterol diet and L-NAME administration. This clinically relevant model would be beneficial for studying ICAS.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Inibidores Enzimáticos/toxicidade , Arteriosclerose Intracraniana , Lipídeos/sangue , NG-Nitroarginina Metil Éster/toxicidade , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Artéria Basilar/patologia , Peso Corporal , Artéria Carótida Interna/patologia , Ingestão de Alimentos , Arteriosclerose Intracraniana/sangue , Arteriosclerose Intracraniana/etiologia , Arteriosclerose Intracraniana/patologia , Masculino , Artéria Cerebral Média/patologia , Ratos , Ratos Sprague-Dawley
17.
Brain Res ; 1648(Pt A): 266-276, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27495986

RESUMO

INTRODUCTION: Although physical exercise has emerged as a potential therapeutic modality for functional deficits following ischemic stroke, the extent of this effect appears to be contingent upon the time of exercise initiation. In the present study, we assessed how exercise timing affected brain damage through hyperglycolysis-associated NADPH oxidase (NOX) activation. METHODS: Using an intraluminal filament, adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2h and assigned to one non-exercise and three exercise groups. Exercise on Rota-rod was initiated for 30min at 6h (considered very early), at 24h (early), and at day 3 (relatively late) after reperfusion. Lactate production was measured 30min after exercise completion, and NOX activity and protein expression of NOX subunits (p47(phox), gp91(phox), p22(phox) and p67(phox)) and glucose transporter 1 and 3 (Glut-1 and -3) were measured at 3 and 24h after exercise. Apoptotic cell death was determined at 24h after exercise. RESULTS: Lactate production and Glut-1 and Glut-3 expression were increased after very early exercise (6h), but not after late exercise (3 days), suggesting hyperglycolysis. NOX activity was increased with the initiation of exercise at 6h (P<0.05), but not 24h or 3 days, following stroke. Early (6 and 24h), but not late (3 days), post-stroke exercise was associated with increased (P<0.05) expression of the NOX protein subunit p47(phox), gp91(phox)and p67(phox). This may have led to the enhanced apoptosis observed after early exercise in ischemic rats. CONCLUSION: Hyperglycolysis and NOX activation was associated with an elevation in apoptotic cell death after very early exercise, and the detrimental effect of exercise on stroke recovery began to decrease when exercise was initiated 24h after reperfusion.


Assuntos
Lesões Encefálicas/enzimologia , Lesões Encefálicas/prevenção & controle , NADPH Oxidases/metabolismo , Condicionamento Físico Animal , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Apoptose , Lesões Encefálicas/complicações , Córtex Cerebral/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Ácido Láctico/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , Fosfoproteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Acidente Vascular Cerebral/complicações
18.
Front Pharmacol ; 7: 521, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28101056

RESUMO

The gluconeogenesis pathway, which has been known to normally present in the liver, kidney, intestine, or muscle, has four irreversible steps catalyzed by the enzymes: pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, and glucose 6-phosphatase. Studies have also demonstrated evidence that gluconeogenesis exists in brain astrocytes but no convincing data have yet been found in neurons. Astrocytes exhibit significant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 activity, a key mechanism for regulating glycolysis and gluconeogenesis. Astrocytes are unique in that they use glycolysis to produce lactate, which is then shuttled into neurons and used as gluconeogenic precursors for reduction. This gluconeogenesis pathway found in astrocytes is becoming more recognized as an important alternative glucose source for neurons, specifically in ischemic stroke and brain tumor. Further studies are needed to discover how the gluconeogenesis pathway is controlled in the brain, which may lead to the development of therapeutic targets to control energy levels and cellular survival in ischemic stroke patients, or inhibit gluconeogenesis in brain tumors to promote malignant cell death and tumor regression. While there are extensive studies on the mechanisms of cerebral glycolysis in ischemic stroke and brain tumors, studies on cerebral gluconeogenesis are limited. Here, we review studies done to date regarding gluconeogenesis to evaluate whether this metabolic pathway is beneficial or detrimental to the brain under these pathological conditions.

19.
CNS Neurosci Ther ; 21(4): 320-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25475834

RESUMO

In the past decade, the significant contribution of the spleen to ischemic brain damage has gained considerable attention in stroke research. As the largest natural reservoir of immune cells, the spleen establishes critical connections with the ischemic brain during the progression of stroke and mobilizes its cells to the site of injury. Multiple "alarm" signals released from the injured brain are essential for the initiation of brain-spleen communication. Spleen-derived cells, including neutrophils, lymphocytes, and monocytes/macrophages, are known to contribute significantly to ischemic brain damage. Understanding the dynamic splenic responses to stroke will not only provide insights into the evolvement of ischemic brain injury but will also identify potential targets for stroke treatment. Here, we review recent studies on the functions of the spleen in ischemic stroke. We have included a discussion of several therapeutic strategies that target splenic responses and reduce acute ischemic brain damage in preclinical studies. Future investigations on the effects of the spleen on long-term stroke recovery are highly warranted.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Baço/citologia , Baço/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Isquemia Encefálica/terapia , Humanos , Degeneração Neural/fisiopatologia , Acidente Vascular Cerebral/terapia
20.
Brain Res ; 1591: 14-26, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25446002

RESUMO

Parkinson's disease (PD) is a common neurodegenerative movement disorder affecting an increasing number of elderly. Various studies have shown that mitochondrial dysfunction and abnormal protein aggregation are two major contributors to the progression of PD. The N terminus of α-synuclein (α-Syn/N), which adopts an α-helical conformation upon lipid binding, is essential for membrane interaction; yet its role in mitochondria remains poorly defined. A functional characterization of the α-Syn N-terminal domain and investigation of its effect on mitochondrial membrane permeability were undertaken in this study. α-Syn/N and α-Syn/delN (amino acids 1-65 and 61-140, respectively) constructs were overexpressed in dopaminergic MN9D cells and primary cortical neurons. A decrease in cell viability was observed in cells transfected with α-Syn/N but not α-Syn/delN. In addition, an α-Syn/N-induced increase in the level of intracellular reactive oxygen species, alteration in mitochondrial morphology, and decrease in mitochondrial membrane potential were accompanied by the activation of mitochondrial permeability transition pores (mPTP). These changes were also associated with a decline in mitochondrial cardiolipin content and interaction with the voltage-dependent anion channel and adenine nucleotide translocator in the mitochondrial membrane. The activation of mPTPs and reduction in cell viability were partially reversed by bongkrekic acid, an inhibitor of adenine nucleotide translocator (ANT), suggesting that the interaction between α-Syn and ANT promoted mPTP activation and was toxic to cells. BKA treatment reduced interaction of α-Syn/N with ANT and VDAC. These results suggest that the N terminus of α-Syn is essential for the regulation of mitochondrial membrane permeability and is a likely factor in the neurodegeneration associated with PD.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Animais , Doença de Parkinson/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA