Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Biomolecules ; 14(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38785917

RESUMO

H19 is an essential imprinted gene that is expressed to govern normal embryonic development. During reprogramming, the parental pronuclei have asymmetric reprogramming capacities and the critical reprogramming factors predominantly reside in the male pronucleus. After inhibiting the expression of H19 and Gtl2, androgenetic haploid ESCs (AG-haESCs) can efficiently and stably support the generation of healthy SC pups at a rate of ~20%, and double-knockout parthenogenetic haESCs can also produce efficiently. Induced pluripotent stem (iPS) cell reprogramming is thought to have a characteristic epigenetic pattern that is the reverse of its developmental potential; however, it is unclear how H19 participates in iPS cell reprogramming. Here, we showed that the expression of H19 was transiently increased during iPSC reprogramming. H19 knockdown resulted in greater reprogramming efficiency. The genes associated with pluripotency showed enhanced expression during the early reprogramming process, and the Oct4 promoter was demethylated by bisulfite genomic sequencing analysis. Moreover, expression analysis revealed that the mesenchymal master regulators associated with epithelial-to-mesenchymal transition (EMT) were downregulated during reprogramming in H19 knockdown. These findings provide functional insight into the role of H19 as a barrier to the early reprogramming process.


Assuntos
Reprogramação Celular , Epigênese Genética , Transição Epitelial-Mesenquimal , Células-Tronco Pluripotentes Induzidas , RNA Longo não Codificante , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transição Epitelial-Mesenquimal/genética , Animais , Reprogramação Celular/genética , Camundongos , Técnicas de Silenciamento de Genes , Masculino , Metilação de DNA/genética
2.
Natl Sci Rev ; 11(2): nwad295, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38327665

RESUMO

Lactate is present at a high level in the microenvironment of mammalian preimplantation embryos in vivo and in vitro. However, its role in preimplantation development is unclear. Here, we report that lactate is highly enriched in the nuclei of early embryos when major zygotic genome activation (ZGA) occurs in humans and mice. The inhibition of its production and uptake results in developmental arrest at the 2-cell stage, major ZGA failure, and loss of lactate-derived H3K18lac, which could be rescued by the addition of Lac-CoA and recapitulated by overexpression of H3K18R mutation. By profiling the landscape of H3K18lac during mouse preimplantation development, we show that H3K18lac is enriched on the promoter regions of most major ZGA genes and correlates with their expressions. In humans, H3K18lac is also enriched in ZGA markers and temporally concomitant with their expressions. Taken together, we profile the landscapes of H3K18lac in mouse and human preimplantation embryos, and demonstrate the important role for H3K18lac in major ZGA, showing that a conserved metabolic mechanism underlies preimplantation development of mammalian embryos.

3.
Adv Sci (Weinh) ; 11(11): e2305992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38196272

RESUMO

Cardiomyocyte maturation is the final stage of heart development, and abnormal cardiomyocyte maturation will lead to serious heart diseases. CXXC zinc finger protein 1 (Cfp1), a key epigenetic factor in multi-lineage cell development, remains underexplored in its influence on cardiomyocyte maturation. This study investigates the role and mechanisms of Cfp1 in this context. Cardiomyocyte-specific Cfp1 knockout (Cfp1-cKO) mice died within 4 weeks of birth. Cardiomyocytes derived from Cfp1-cKO mice showed an inhibited maturation phenotype, characterized by structural, metabolic, contractile, and cell cycle abnormalities. In contrast, cardiomyocyte-specific Cfp1 transgenic (Cfp1-TG) mice and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) overexpressing Cfp1 displayed a more mature phenotype. Mechanistically, deficiency of Cfp1 led to a reduction in trimethylation on lysine 4 of histone H3 (H3K4me3) modification, accompanied by the formation of ectopic H3K4me3. Furthermore, Cfp1 deletion decreased the level of H3K4me3 modification in adult genes and increased the level of H3K4me3 modification in fetal genes. Collectively, Cfp1 modulates the expression of genes crucial to cardiomyocyte maturation by regulating histone H3K4me3 modification, thereby intricately influencing the maturation process. This study implicates Cfp1 as an important molecule regulating cardiomyocyte maturation, with its dysfunction strongly linked to cardiac disease.


Assuntos
Histonas , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Histonas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Transativadores/genética , Transativadores/metabolismo
4.
Dev Dyn ; 253(7): 635-647, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38131461

RESUMO

BACKGROUND: A precise balance between the proliferation and differentiation of epidermal progenitors is required to achieve the barrier function during the development of epidermis. During the entire process of skin development, the newly formed basal layer cells divide, differentiate, and migrate outward to the surface of the skin, which is tightly regulated by a series of events related to cell cycle progression. The CRL4DTL complex (Cullin 4 RING ligase, in association with the substrate receptor DTL) has long emerged as a master regulator in various cellular processes, which mediates the degradation of key cell cycle proteins. However, the roles of DTL in regulating epidermal morphogenesis during skin development remain unclear. RESULTS: We showed that DTL deficiency in epidermal progenitor cells leads to defects in epidermal stratification and loss of hair follicles accompanied by reduced epidermal progenitor cells and disturbed cell cycle progression during skin development. Transcriptome analysis revealed that p53 pathway is activated in DTL-depleted epidermal progenitor cells. The apoptosis of epidermal cells showed in DTL deficiency mice is rescued by the absence of p53, but the proliferation and differentiation defects were p53-independent. CONCLUSION: Our findings indicate that DTL plays a vital role in epidermal malformation during skin development.


Assuntos
Diferenciação Celular , Proliferação de Células , Epiderme , Folículo Piloso , Ubiquitina-Proteína Ligases , Animais , Camundongos , Folículo Piloso/metabolismo , Folículo Piloso/citologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Epiderme/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos Knockout , Células Epidérmicas/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Pele/metabolismo , Pele/citologia
5.
Nat Commun ; 14(1): 6107, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777507

RESUMO

Hepatic ischemia-reperfusion injury (IRI) is a common complication occurs during hepatic resection and transplantation. However, the mechanisms underlying hepatic IRI have not been fully elucidated. Here, we aim to explore the role of fibroblast growth factor 18 (FGF18) in hepatic IRI. In this work, we find that Hepatic stellate cells (HSCs) secrete FGF18 and alleviates hepatocytes injury. HSCs-specific FGF18 deletion largely aggravates hepatic IRI. Mechanistically, FGF18 treatment reduces the levels of ubiquitin carboxyl-terminal hydrolase 16 (USP16), leading to increased ubiquitination levels of Kelch Like ECH Associated Protein 1 (KEAP1) and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, USP16 interacts and deubiquitinates KEAP1. More importantly, Nrf2 directly binds to the promoter of USP16 and forms a negative feedback loop with USP16. Collectively, our results show FGF18 alleviates hepatic IRI by USP16/KEAP1/Nrf2 signaling pathway in male mice, suggesting that FGF18 represents a promising therapeutic approach for hepatic IRI.


Assuntos
Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/genética , Transdução de Sinais
6.
Life Sci ; 324: 121734, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105442

RESUMO

AIMS: Maternal immune activation (MIA) via infection during pregnancy is known to be an environmental risk factor for neurodevelopmental disorders and the development of autism spectrum disorders (ASD) in the offspring, but it still remains elusive that the molecular relevance between infection-induced abnormal neurodevelopmental events and an increased risk for ASD development. MAIN METHODS: Fully considering the extremely high genetic heterogeneity of ASD and the universality of risk-gene with minimal effect-sizes, the gene and pathway-based association analysis was performed with the transcriptomic and DNA methylation landscapes of temporal human embryonic brain development and ASD, and the time-course transcriptional profiling of MIA. We conducted the transcriptional profiling of mouse abnormal neurodevelopment two days following induced MIA via LPS injection at E10.5. KEY FINDINGS: A novel evidence was proved that illustrated altering four immune and metabolism-related risk pathways, including starch and sucrose metabolism, ribosome, protein processing in endoplasmic reticulum, and retrograde endocannabinoid signaling pathway, which were prominent involvement in the process of MIA regulating abnormal fetal brain development to induce an increased risk of ASD. Here, we have observed that almost all key genes within these risk pathways are significantly differentially expressed at embryonic days (E) 10.5-12.5, which is considered to be the optimal coincidence window of mouse embryonic brain development to study the intimate association between MIA and ASD using mouse animal models. SIGNIFICANCE: There search establishes that MIA causes dysregulation of immune and metabolic pathways, which leads to abnormal embryonic neurodevelopment, thus promoting development of ASD symptoms in offspring.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Camundongos , Animais , Humanos , Transtorno do Espectro Autista/genética , Comportamento Animal , Modelos Animais de Doenças , Transcriptoma , Efeitos Tardios da Exposição Pré-Natal/genética
7.
Nat Commun ; 14(1): 1235, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871047

RESUMO

Fibroblast growth factor-18 (FGF18) has diverse organ development and damage repair roles. However, its role in cardiac homeostasis following hypertrophic stimulation remains unknown. Here we investigate the regulation and function of the FGF18 in pressure overload (PO)-induced pathological cardiac hypertrophy. FGF18 heterozygous (Fgf18+/-) and inducible cardiomyocyte-specific FGF18 knockout (Fgf18-CKO) male mice exposed to transverse aortic constriction (TAC) demonstrate exacerbated pathological cardiac hypertrophy with increased oxidative stress, cardiomyocyte death, fibrosis, and dysfunction. In contrast, cardiac-specific overexpression of FGF18 alleviates hypertrophy, decreased oxidative stress, attenuates cardiomyocyte apoptosis, and ameliorates fibrosis and cardiac function. Tyrosine-protein kinase FYN (FYN), the downstream factor of FGF18, was identified by bioinformatics analysis, LC-MS/MS and experiment validation. Mechanistic studies indicate that FGF18/FGFR3 promote FYN activity and expression and negatively regulate NADPH oxidase 4 (NOX4), thereby inhibiting reactive oxygen species (ROS) generation and alleviating pathological cardiac hypertrophy. This study uncovered the previously unknown cardioprotective effect of FGF18 mediated by the maintenance of redox homeostasis through the FYN/NOX4 signaling axis in male mice, suggesting a promising therapeutic target for the treatment of cardiac hypertrophy.


Assuntos
Fatores de Crescimento de Fibroblastos , Espectrometria de Massas em Tandem , Masculino , Animais , Camundongos , Cromatografia Líquida , Camundongos Knockout , Miócitos Cardíacos , Cardiomegalia
8.
Nanoscale Adv ; 5(3): 756-766, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756529

RESUMO

The combination of graphene and perovskite has received extensive research attention because its photoelectric properties are excellent for the dynamic manipulation of light-matter interactions. Combining graphene and perovskite with a metasurface is expected to effectively improve the metasurface device's performance. Here, we report a terahertz graphene-perovskite metasurface with a tunable resonance. Under 780 nm laser excitation, the device's THz transmission is significantly reduced, and the Fano resonance mode can be manipulated in multiple dimensions. We verify the experimental results using a finite-difference time-domain (FDTD) simulation. Graphene and perovskite interact strongly with the metasurface, resulting in a short-circuit effect, which significantly weakens the resonance intensity of the Fano mode. The photoinduced conductivity enhancement intensifies the short-circuit effect, reducing the THz transmission and resonance intensity of the Fano mode and causing the resonance frequency to redshift. Finally, we provide a reference value for applications of hybrid metasurface-based optical devices in a real environment by investigating the effect of moisture on device performance.

9.
Comput Biol Med ; 151(Pt B): 106334, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36442276

RESUMO

Maternal immune activation (MIA) during pregnancy is known to be an environmental risk factor for neurodevelopment and autism spectrum disorder (ASD). However, it is unclear at which fetal brain developmental windows and regions MIA induces ASD-related neurodevelopmental transcriptional abnormalities. The non-chasm differentially expressed genes (DEGs) involved in MIA inducing ASD during fetal brain developmental windows were identified by performing the differential expression analysis and comparing the common DEGs among MIA at four different gestational development windows, ASD with multiple brain regions from human patients and mouse models, and human and mouse embryonic brain developmental trajectory. The gene set and functional enrichment analyses were performing to identify MIA dysregulated ASD-related the fetal neurodevelopmental windows and brain regions and function annotations. Additionally, the networks were constructed using Cytoscape for visualization. MIA at E12.5 and E14.5 increased the risk of distinct brain regions for ASD. MIA-driven transcriptional alterations of non-chasm DEGs, during the coincidence brain developmental windows between human and mice, involving ASD-relevant synaptic components, as well as immune- and metabolism-related functions and pathways. Furthermore, a great number of non-chasm brain development-, immune-, and metabolism-related DEGs were overlapped in at least two existing ASD-associated databases, suggesting that the others could be considered as the candidate targets to construct the model mice for explaining the pathological changes of ASD when environmental factors (MIA) and gene mutation effects co-occur. Overall, our search supported that transcriptome-based MIA dysregulated the brain development-, immune-, and metabolism-related non-chasm DEGs at specific embryonic brain developmental window and region, leading to abnormal embryonic neurodevelopment, to induce the increasing risk of ASD.


Assuntos
Transtorno do Espectro Autista , Gravidez , Feminino , Animais , Camundongos , Humanos , Transtorno do Espectro Autista/genética , Transcriptoma/genética , Modelos Animais de Doenças , Encéfalo/patologia
10.
Opt Express ; 30(21): 37261-37271, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258317

RESUMO

Metal halide perovskites are studied for photodetection applications because of their outstanding optical and electrical properties. A self-powered ultraviolet-to-near infrared broadband photodetector based on a Ag-doped CsPbI3/PEDOT:PSS heterojunction was investigated. The photodetector using a CsPbI3:Ag/PEDOT:PSS heterostructure with a planar photoconductive structure operated over a broad 355-1560 nm wavelength range in self-powered mode. A terahertz signal was modulated with the CsPbI3:Ag/PEDOT:PSS structure at low optical excitation intensity to investigate its photodetection mechanism. The experimentally designed detector can present images of the letters "C", "N" and "U" in the visible and near-infrared wavelengths, indicating a potential broadband imaging application.

11.
Sci Adv ; 8(43): eabn9016, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306357

RESUMO

Growing oocytes store a large amount of maternal mRNA to support the subsequent "maternal-zygotic transition" process. At present, it is not clear how the growing oocytes store and process the newly transcribed mRNA under physiological conditions. In this study, we report non-membrane-bound compartments, nuclear poly(A) domains (NPADs), as the hub for newly transcribed mRNA, in developing mouse oocytes. The RNA binding protein PABPN1 promotes the formation of NPAD through its N-terminal disordered domain and RNA-recognized motif by means of liquid phase separation. Pabpn1-null growing oocytes cannot form NPAD normally in vivo and have defects in stability of oocyte growing-related transcripts and formation of long 3' untranslated region isoform transcripts. Ultimately, Pabpn1fl/fl;Gdf9-Cre mice are completely sterile with primary ovarian insufficiency. These results demonstrate that NPAD formed by the phase separation properties of PABPN1-mRNA are the hub of the newly transcribed mRNA and essential for the development of oocytes and female reproduction.


Assuntos
Núcleo Celular , Poli A , Animais , Feminino , Camundongos , Núcleo Celular/metabolismo , Oócitos/metabolismo , Poli A/genética , Poli A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
Opt Express ; 30(22): 40611-40625, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298991

RESUMO

The organic-inorganic hybrid perovskite CH3NH3PbBr3(MAPbBr3) has been well developed in the X-ray to visible light band due to its superior optoelectronic properties, but this material is rarely studied in the infrared band. In this paper, a UV-NIR broadband optical detector based on MAPbBr3 single crystal is studied, and the response range can reach the near-infrared region. In the visible light band, the optical response of the device is mainly caused by the photoelectric effect; in the near-infrared band, the optical response of the device is mainly caused by the thermal effect. The carrier response of MAPbBr3 material under different wavelengths of light was investigated using a non-contact measurement method (optical pump terahertz (THz) probe spectroscopy). This paper also builds a set of photoelectric sensor array components, and successfully realizes the conversion of optical image signals to electrical image signals in the visible light band and infrared band. The experimental results show that MAPbBr3 crystals provide a new possibility for UV-NIR broadband photodetectors.

13.
Cell Discov ; 8(1): 96, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167681

RESUMO

Metabolism feeds into the regulation of epigenetics via metabolic enzymes and metabolites. However, metabolic features, and their impact on epigenetic remodeling during mammalian pre-implantation development, remain poorly understood. In this study, we established the metabolic landscape of mouse pre-implantation embryos from zygote to blastocyst, and quantified some absolute carbohydrate metabolites. We integrated these data with transcriptomic and proteomic data, and discovered the metabolic characteristics of the development process, including the activation of methionine cycle from 8-cell embryo to blastocyst, high glutaminolysis metabolism at blastocyst stage, enhanced TCA cycle activity from the 8-cell embryo stage, and active glycolysis in the blastocyst. We further demonstrated that oxidized nicotinamide adenine dinucleotide (NAD+) synthesis is indispensable for mouse pre-implantation development. Mechanistically, in part, NAD+ is required for the exit of minor zygotic gene activation (ZGA) by cooperating with SIRT1 to remove zygotic H3K27ac. In human, NAD+ supplement can promote the removal of zygotic H3K27ac and benefit pre-implantation development. Our findings demonstrate that precise and timely regulation of minor ZGA is controlled by metabolic dynamics, and enhance our understanding of the metabolism of mammalian early embryos.

14.
Biochem Biophys Res Commun ; 629: 101-105, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116371

RESUMO

Accumulated studies have suggested that bone morphogenetic proteins (BMPs) are critical for skin development. However, it remains elusive how BMP signaling via ALK2 (aka ACVR1), one of the important BMP type I receptors, regulates keratinocyte differentiation. To address this question, we utilized a genetic system that enhances BMP signaling via ALK2 in an epidermis-specific manner in mice (hereafter ca-Alk2:K14-Cre). Ca-Alk2:K14-Cre mice displayed a sticky and hairless skin phenotype with a thinner epidermis incapable of differentiating. Although cellular proliferation and survival were comparable between wild-type and ca-Alk2:K14-Cre mice, skin differentiation was severely hampered in ca-Alk2:K14-Cre mice. To uncover the mechanism of altered keratinocyte differentiation, we performed a transcriptome analysis. As a result, we found that the expression levels of cell cycle inhibitor p21 were increased in ca-Alk2:K14-Cre mice. Our findings suggest that aberrant BMP signaling via ALK2 positively regulates p21 expression that attenuates keratinocyte differentiation, and further highlights the critical role of BMP signaling in skin development.


Assuntos
Receptores de Ativinas Tipo I , Proteínas Morfogenéticas Ósseas , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/genética , Queratinócitos/metabolismo , Camundongos , Transdução de Sinais/genética
15.
Nanoscale Adv ; 4(16): 3342-3352, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131710

RESUMO

A graphene-based terahertz negative-conductivity metasurface based on two types of unit cell structures is investigated under the control of an external bias voltage. Electrical characterization is conducted and verification is performed using a finite-difference time-domain (FDTD) and an optical-pump terahertz (THz)-probe system in terms of simulation and transient response analysis. Owing to the metal-like properties of graphene, a strong interaction between the metasurface and monolayer graphene yields a short-circuit effect, which considerably weakens the intensity of the resonance mode under passive conditions. Under active conditions, graphene, as an active load, actively induces a negative-conductivity effect, which enhances the THz transmission and recovers the resonance intensity gradually because of the weakening of the short-circuit effect. The resulting resonance frequency shows a blue shift. This study provides a reference value for combining graphene exhibiting the terahertz bias-driven negative-conductivity effect with metasurfaces and its corresponding applications in the future.

16.
J Mol Histol ; 53(4): 623-634, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35870072

RESUMO

Differentiated cells can be reprogrammed to embryonic stem cell-like cells called induced pluripotent stem cells (iPSCs), in which the natural developmental differentiation process is reversed. It is unclear whether the multi-lineage cells can be isolated and identified during reprogramming. In the current study, we detected the expression of lineage markers, isolated neural lineages, and identified the related microRNAs during iPSC formation. Our results demonstrated that a neuroectoderm appeared earlier than mesoderm and definitive endoderm before forming colonies when mouse embryonic fibroblasts were subjected to iPSC formation using transcription factors (TFs). On day 3, the cells expressed Sox1 and Nestin and had ultrastructure consistent with the transition to identity neural germ layer lineage. Fluorescence-activated cell sorting analysis revealed a peak (40%) in neural progenitor marker-positive cells. When subsequently cultured in a neural precursor cell medium, these cells proliferated slowly, became round and aggregated, generating into neurons and glia. Genome-wide microRNA (miRNA) analysis identified 45 differentially regulated miRNAs. Molecular network analysis demonstrated that these miRNAs validated 6,047 experimental mRNA targets. The GO functional annotation analysis of mRNA targets revealed that most genes were related to neurogenesis, such as growth cone, neuronal cell body, neuron projection, and cell junction synapse. The network of protein-protein interactions was observed, which demonstrated that key nodes of neural lineage reprogramming-associated targets were Sall1, Foxa2, Nf2, Ctnnb1, Shh, and Bmpr1a. Therefore, these data suggested that TFs can drive the reprogramming of somatic cells towards a pluripotent state via neuroectoderm. Moreover, the neural lineage reprogramming system can address how miRNAs influence their target sites.


Assuntos
Reprogramação Celular , MicroRNAs , Animais , Diferenciação Celular/genética , Reprogramação Celular/genética , Fibroblastos/metabolismo , Mesoderma , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
17.
Biochem Biophys Res Commun ; 614: 183-190, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35598429

RESUMO

Maternal insults during pregnancy induces an increased risk of autism spectrum disorders (ASD) in offspring, but the neuropathological changes in this process remains not to be established. To shed light on this, the transcriptome datasets of maternal blood samples with children later diagnosed with ASD and typical development, and tissue samples of multiple brain regions from ASD patients and human neurodevelopment were conducted to identify the non-chasm differentially expressed genes (DEGs) to generate the spatio-temporal dynamic change. Combined enrichment and interaction network analysis revealed that non-chasm DEGs with similar expression trajectories in the same brain regions, were involved in neural, immune and metabolic GO functions and KEGG pathways, respectively, suggesting that did not performed exactly the same functions. Interestingly, our results found that non-chasm DEGs in frontal cortex and temporal cortex were associated with COVID-19, suggesting that as an environmental risk factor COVID-19 affects an increased risk of ASD.


Assuntos
Transtorno do Espectro Autista , COVID-19 , Transtorno do Espectro Autista/genética , Encéfalo , Criança , Feminino , Feto , Humanos , Gravidez , Transcriptoma
18.
Opt Express ; 30(2): 2626-2635, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209398

RESUMO

Morphology engineering was investigated for hybrid perovskites CH3NH3PbI3:Ag/Poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) that were fabricated in both air and nitrogen environments for active terahertz (THz) memory modulation. Under low optical excitation or an applied bias, THz amplitude modulation or rapid restore in both CH3NH3PbI3:Ag/PEDOT:PSS hybrid structures were demonstrated. The recovery time of the modulated THz wave in the sample fabricated in air was considerably longer than that of the sample fabricated in nitrogen because of defect states induced by a high degree of roughness. THz transmissions were used as coded pixel units and were programmed to store a 4×4 image or a multi-order signal. Hence, active THz memory modulation was demonstrated. It also has potential applications as a visible to near-infrared broad-spectrum light detector.

19.
Oral Dis ; 28(3): 711-722, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33404136

RESUMO

OBJECTIVES: Although integrins have been shown to be associated with proliferation and differentiation in some stem cells, the regulatory effect of integrin α6 (ITGα6) on the human dental pulp stem cells (hDPSCs) has not been reported. Here, we detected the roles of ITGα6 in hDPSCs. MATERIALS AND METHODS: Attached to Cytodex 3 microcarriers, hDPSCs grown under stimulated microgravity (SMG) or conventional culture conditions were measured the proliferation and different gene expression. Further, ITGα6 was silenced in hDPSCs, and its effect on proliferation, differentiation, and cytoskeletal organization was analyzed. RESULTS: SMG conditions increased the number of Ki67-positive hDPSCs and progression into S phase of cell cycle. WB analysis showed the expression of ITGα6 was upregulated in hDPSCs under SMG conditions. Knockdown of ITGα6 decreased the expression of stemness markers, CD105 and STRO-1 in hDPSCs, but promoted the osteogenic and odontogenic differentiation by increased ALP expression and Alizarin Red nodules. Moreover, RNA-seq demonstrated that RHO/ROCK signaling pathway upregulated silencing ITGα6-hDPSCs. Treatment with Y-27632 inhibited the effect of ITGα6 depletion on hDPSCs stemness, rearranged the cytoskeleton, promoted the pluripotency, proliferation ability, and inhibited the differentiation. CONCLUSION: ITGα6 promotes hDPSCs stemness via inhibiting RHO/ROCK and restoring cytoskeleton.


Assuntos
Polpa Dentária , Células-Tronco , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Integrina alfa6/farmacologia
20.
Cell Cycle ; 20(17): 1708-1722, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34384323

RESUMO

Breast cancer (BC) is one of the most common malignancies in female, and has a high mortality rate. The mechanisms of tumorigenesis and reprogramming of somatic cells have a certain degree of similarity. Here, we focus on the relationship between gene expression, signaling pathways and functions in BC compared to induced pluripotent stem cells (iPSCs). We first identified differentially expressed genes (DEGs) common to BC and iPSCs in datasets from GEO and TCGA. We found 22 DEGs that were significantly associated with clinicopathological features and prognosis by performing Kaplan-Meier survival analysis and one-way ANOVA. The results of protein mass spectrometry of tumor stem cells (Mcfips) demonstrated that the proteins encoded by 8 of these DEGs were also differentially expressed. The functional enrichment analysis showed that most of the 30 DEGs were related to collagen and chromatin functions. Our results might offer targets for future studies into the mechanisms underlying tumor occurrence and progression, and our studies could provide valuable data for both basic research and clinical applications of BC.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA