Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610419

RESUMO

Through-wall radar human body pose recognition technology has broad applications in both military and civilian sectors. Identifying the current pose of targets behind walls and predicting subsequent pose changes are significant challenges. Conventional methods typically utilize radar information along with machine learning algorithms such as SVM and random forests to aid in recognition. However, these approaches have limitations, particularly in complex scenarios. In response to this challenge, this paper proposes a cross-modal supervised through-wall radar human body pose recognition method. By integrating information from both cameras and radar, a cross-modal dataset was constructed, and a corresponding deep learning network architecture was designed. During training, the network effectively learned the pose features of targets obscured by walls, enabling accurate pose recognition (e.g., standing, crouching) in scenarios with unknown wall obstructions. The experimental results demonstrated the superiority of the proposed method over traditional approaches, offering an effective and innovative solution for practical through-wall radar applications. The contribution of this study lies in the integration of deep learning with cross-modal supervision, providing new perspectives for enhancing the robustness and accuracy of target pose recognition.


Assuntos
Corpo Humano , Militares , Humanos , Radar , Algoritmos , Aprendizado de Máquina
2.
Analyst ; 149(4): 1022-1049, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38273740

RESUMO

Escherichia coli (E. coli) is a prevalent enteric bacterium and a necessary organism to monitor for food safety and environmental purposes. Developing efficient and specific methods is critical for detecting and monitoring viable E. coli due to its high prevalence. Conventional culture methods are often laborious and time-consuming, and they offer limited capability in detecting potentially harmful viable but non-culturable E. coli in the tested sample, which highlights the need for improved approaches. Hence, there is a growing demand for accurate and sensitive methods to determine the presence of viable E. coli. This paper scrutinizes various methods for detecting viable E. coli, including culture-based methods, molecular methods that target DNAs and RNAs, bacteriophage-based methods, biosensors, and other emerging technologies. The review serves as a guide for researchers seeking additional methodological options and aiding in the development of rapid and precise assays. Moving forward, it is anticipated that methods for detecting E. coli will become more stable and robust, ultimately contributing significantly to the improvement of food safety and public health.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Escherichia coli/genética , Inocuidade dos Alimentos , Microbiologia de Alimentos
3.
Anal Sci ; 39(10): 1643-1660, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37378821

RESUMO

Salmonella is a common intestinal pathogen that can cause food poisoning and intestinal disease. The high prevalence of Salmonella necessitates efficient and sensitive methods for its identification, detection, and monitoring, especially of viable Salmonella. Conventional culture methods need to be more laborious and time-consuming. And they are relatively limited in their ability to detect Salmonella in the viable but non-culturable status if present in the sample to be tested. As a result, there is an increasing need for rapid and accurate techniques to detect viable Salmonella spp. This paper reviewed the status and progress of various methods reported in recent years that can be used to detect viable Salmonella, such as culture-based methods, molecular methods targeting RNAs and DNAs, phage-based methods, biosensors, and some techniques that have the potential for future application. This review can provide researchers with a reference for additional method options and help facilitate the development of rapid and accurate assays. In the future, viable Salmonella detection approaches will become more stable, sensitive, and fast and are expected to play a more significant role in food safety and public health.


Assuntos
Técnicas Biossensoriais , Salmonella , Microbiologia de Alimentos , Técnicas Biossensoriais/métodos , Inocuidade dos Alimentos
4.
BMC Pulm Med ; 23(1): 158, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147602

RESUMO

BACKGROUND: We aimed to determine the clinical. outcomes of various immune checkpoint inhibitor (ICI) combinations for the treatment of non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations. The results predicted the treatment efficacy of these combinations. METHODS: From July 15, 2016 to March 22, 2022, 85 NSCLC patients with EGFR mutations, enrolled at the Zhejiang Cancer Hospital, received ICI combinations after resistance to prior EGFR-tyrosine kinase inhibitors (EGFR-TKIs). These patients were diagnosed with EGFR mutations using an amplification refractory mutation system PCR (ARMS-PCR) and next-generation sequencing (NGS). Survival times were analyzed using the Kaplan-Meier method and log-rank test. RESULTS: Patients who received ICIs combined with anti-angiogenic therapy had longer progression-free survival (PFS) and overall survival (OS) than patients who received ICIs combined with chemotherapy. There was no significant difference in survival time between patients who received ICIs combined with chemotherapy and anti-angiogenic therapy and patients who received ICIs combined with anti-angiogenic therapy or ICIs combined with chemotherapy, which was due to the limitation sample size of patients who received ICIs combined with chemotherapy and anti-angiogenic therapy. Patients with L858R mutations had a longer PFS and OS than patients with exon 19 deletions. T790M negative patients benefited more from ICI combinations, compared with T790M positive patients. In addition, there was no significant difference in PFS and OS between patients with TP53 co-mutations and patients without a TP53 co-mutation. We also found that patients with prior first-generation EGFR-TKI resistance had longer PFS and OS than prior third-generation EGFR-TKI resistance patients. There was no new adverse event in this study. CONCLUSIONS: EGFR-mutated patients who received ICIs combined with anti-angiogenic therapy had longer PFS and OS than patients with ICIs combined with chemotherapy. Patients with L858R or without T790M mutation benefited more from ICI combinations. Besides, patients with prior first-generation EGFR-TKI resistance could benefit more from ICIs combinations than prior third-generation EGFR-TKI resistance patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptores ErbB/genética , Mutação , Inibidores de Proteínas Quinases/efeitos adversos
5.
Anal Sci ; 39(2): 191-202, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36357755

RESUMO

Salmonella is a rod-shaped, Gram-negative zoonotic pathogen that poses a serious global socioeconomic and public health threat. Rapid and accurate detection of Salmonella spp. is critical for effective control of its infection. In this study, an accurate, sensitive and specific graphene oxide-assisted accelerated strand exchange amplification (GO-ASEA) method for rapid detection of Salmonella spp. was developed and validated. The detection limit of the GO-ASEA method was 8.6 × 101 fg µL-1 of Salmonella genomic DNA or 1 × 101 CFU g-1 of Salmonella in spiked chicken faeces free of pre-enrichment. And the GO-ASEA method could specifically detect Salmonella spp. without cross-reactivity with other enteric pathogens. In addition, the novel method achieved Salmonella detection within 30 min and was validated using 209 clinical samples, showing its good clinical applicability. Therefore, the GO-ASEA method is a new optional tool for the rapid detection of pathogenic microorganisms, which is ideal for food safety monitoring and high-throughput detection.


Assuntos
Grafite , Salmonella , Animais , Salmonella/genética , Galinhas/genética , DNA , Microbiologia de Alimentos , Sensibilidade e Especificidade
6.
Front Plant Sci ; 13: 1021203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275525

RESUMO

How to improve the yield of crops has always been the focus of breeding research. Due to the population growth and global climate change, the demand for food has increased sharply, which has brought great challenges to agricultural production. In order to make up for the limitation of global cultivated land area, it is necessary to further improve the output of crops. Photosynthesis is the main source of plant assimilate accumulation, which has a profound impact on the formation of its yield. This review focuses on the cultivation of high light efficiency plants, introduces the main technical means and research progress in improving the photosynthetic efficiency of plants, and discusses the main problems and difficulties faced by the cultivation of high light efficiency plants. At the same time, in view of the frequent occurrence of high-temperature disasters caused by global warming, which seriously threatened plant normal production, we reviewed the response mechanism of plants to heat stress, introduced the methods and strategies of how to cultivate heat tolerant crops, especially rice, and briefly reviewed the progress of heat tolerant research at present. Given big progress in these area, the era of cultivating smart rice with high light efficiency and heat tolerance has come of age.

7.
Anal Methods ; 14(21): 2072-2082, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35546107

RESUMO

African swine fever is an acute, severe and highly contagious infectious disease caused by African swine fever virus (ASFV), posing a huge threat to the global swine industry. Rapid and accurate diagnostic methods are of great significance for the effective prevention and control of ASFV transmission. In this work, we established and evaluated a graphene oxide-based accelerated strand exchange amplification (GO-ASEA) method for rapid, highly sensitive, and quantitative detection of ASFV. The use of GO provided a novel solution reference for improving the specificity of strand exchange amplification and solving the potential false positive problem caused by primer dimers. The detection limit of the GO-ASEA assay was 5.8 × 10-1 copies per µL of ASFV (equal to 2.9 copies per reaction) or 5.8 × 100 copies per µL of ASFV in spiked swine nasal swabs. The selectivity of the GO-ASEA assay was supported by the ASFV DNA reference material and another seven porcine-derived viruses with similar clinical symptoms. The GO-ASEA assay took only about 29 minutes and was validated with 6 inactivated specimens and 52 swine nasal swabs, showing excellent clinical applicability. The novel assay is an accurate and practical method for rapid, highly sensitive detection of ASFV, and can potentially serve as a robust tool in epidemic prevention and point-of-care diagnosis.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/diagnóstico , Vírus da Febre Suína Africana/genética , Animais , Grafite , Sensibilidade e Especificidade , Suínos
8.
J Vet Diagn Invest ; 33(4): 762-766, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33856244

RESUMO

Fowl adenovirus serotype 4 (FAdV4), the causative agent of hepatitis-hydropericardium syndrome (HPS), has caused major economic losses to the poultry industry worldwide. Although inactivated vaccines have been deployed widely against FAdV4, a DIVA (differentiating infected from vaccinated animals) test specific for FAdV4 has not been available. We synthesized an immunogenic peptide, corresponding to regions 66-88 aa of the 22K nonstructural protein of FAdV4, and used the peptide as coating antigen to develop an indirect ELISA for a DIVA test specific to FAdV4. Specificity analysis showed that the ELISA only reacted with sera against FAdV4, and not with sera against other pathogens tested. Moreover, the ELISA could effectively differentiate FAdV4-infected chickens from vaccinated chickens. In a test of sera from experimentally infected chickens, the ELISA had 95% and 85% concordance with an indirect immunofluorescence assay (indirect IFA) and a commercial ELISA, respectively, and the concordance was 80.5% between the ELISA and the indirect IFA in detecting clinical infection samples. Our peptide-based ELISA provides an efficient DIVA test for FAdV4 in clinical samples.


Assuntos
Infecções por Adenoviridae/veterinária , Aviadenovirus/isolamento & purificação , Galinhas , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças das Aves Domésticas/diagnóstico , Vacinação/veterinária , Infecções por Adenoviridae/diagnóstico , Infecções por Adenoviridae/virologia , Animais , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/instrumentação , Ensaio de Imunoadsorção Enzimática/métodos , Peptídeos/química , Doenças das Aves Domésticas/virologia , Sorogrupo
9.
Toxicol Appl Pharmacol ; 419: 115518, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33812963

RESUMO

Lung cancer is considered the main cause of cancer mortality worldwide. Osimertinib, a third-generation EGFR-TKI, has been approved and administrated for treating patients with either EGFR T790M mutation or EGFR sensitive mutation. However, resistance to osimertinib emerges and has been considered to be the main obstacle in lung cancer treatment. Polyphyllin I is isolated from the natural herb Paris polyphylla and exhibits anti-cancer activities. In the present study, we identify Polyphyllin I to reverse the resistance of osimertinib in vitro and in vivo. The results showed that Polyphyllin I reversed the resistance of osimertinib through promoting apoptosis, modulating the PI3K/Akt signaling, and regulating the expression of apoptosis-related proteins in osimertinib-resistant cell lines. In vivo study confirmed the results, showing that the tumor growth was significantly suppressed in the Polyphyllin I/osimertinib group compared to the osimertinib group. It has been clarified that Polyphyllin I could reverse the resistance of osimertinib in osimertinib-resistant non-small cell of lung cancer in vitro and in vivo. The underlying mechanism might be related to the downregulation of the PI3K/Akt signaling and increase of the expression of apoptosis-related proteins, suggesting that Polyphyllin I was a promising therapeutic agent for reversing the resistance of osimertinib.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Diosgenina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Diosgenina/farmacologia , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
AMB Express ; 10(1): 181, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026522

RESUMO

With PCR becoming one of the most important and widely-used diagnostic tools for infectious diseases of poultry, an urgent need has developed for an endogenous internal control (EIC) that monitors the quality and quantity of poultry DNA in test samples. In this study we developed a SYBR-qPCR to target the poultry homolog of the hydroxymethylbilane synthase (HMBS) gene as an EIC for avian species. The avian HMBS-based qPCR was very sensitive, detecting one HMBS gene copy in a 20 µL reaction, and is highly specific for avian species. It amplified DNA from 11 organs and tissues of chickens showing it can be used as an EIC on a large variety of samples. The application of the established EIC on clinically and experimentally infected samples demonstrated that false negativity and result variations could result from samples being collected using different operators, techniques, preservatives, and storage times. The high sensitivity and specificity of the avian HMBS-based qPCR, its ability to quantify DNAs extracted from a wide range of tissues and poultry species along with its usefulness in reducing false negativity in PCR results associated with inadequate sampling and storage degradation makes it an ideal EIC for poultry DNA and RNA PCR diagnostics. The study also highlights the importance of appropriate sampling and storage of samples in ensuring accuracy of molecular diagnostic testing.

11.
Langmuir ; 32(12): 3085-94, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26954100

RESUMO

Hollow Au-Cu2O core-shell nanoparticles were synthesized by using hollow gold nanoparticles (HGNs) as the plasmon-tailorable cores to direct epitaxial growth of Cu2O nanoshells. The effective geometry control of hollow Au-Cu2O core-shell nanoparticles was achieved through adjusting the HGN core sizes, Cu2O shell thicknesses, and morphologies related to structure-directing agents. The morphology-dependent plasmonic band red-shifts across the visible and near-infrared spectral regions were observed from experimental extinction spectra and theoretical simulation based on the finite-difference time-domain method. Moreover, the hollow Au-Cu2O core-shell nanoparticles with synergistic optical properties exhibited higher photocatalytic performance in the photodegradation of methyl orange when compared to pristine Cu2O and solid Au-Cu2O core-shell nanoparticles under visible-light irradiation due to the efficient photoinduced charge separation, which could mainly be attributed to the Schottky barrier and plasmon-induced resonant energy transfer. Such optical tunability achieved through the hollow cores and structure-directed shells is of benefit to the performance optimization of metal-semiconductor nanoparticles for photonic, electronic, and photocatalytic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA