Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(6): 2858-2866, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36620871

RESUMO

BACKGROUND: Protein oxidation during food processing causes changes in the balance of protein-molecular interactions and protein-water interactions, ultimately leading to protein denaturation, which results in the loss of a range of functional properties. Therefore, how to control the oxidative modification of proteins during processing has been the focus of research. RESULTS: In the present study, the intrinsic fluorescence value of the myofibrillar proteins (MP) decreased and the surface hydrophobicity value increased, indicating that the heat treatment caused a significant change in the conformation of the MP. With an increase in heating temperature, protein carbonyl content increased, total sulfhydryl content decreased, and protein secondary structure changed from α-helix to ß-sheet, indicating that protein oxidation and aggregation occurred. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that heat treatment can lead to the degradation of proteins, especially myosin heavy chain, although actin had a certain thermal stability. In total, 733 proteins were identified by proteomics, and the protein oxidation caused by low temperature vacuum heating (LTVH) was determined to be mild oxidation dominated by malondialdehyde and 4-hydroxynonenal by oxidation site division. CONCLUSION: The present study has revealed the effect of LTVH treatment on the protein oxidation modification behavior of sturgeon meat, and explored the effect mechanism of LTVH treatment on the processing quality of sturgeon meat from the perspective of protein oxidation. The results may provide a theoretical basis for the precise processing of aquatic products. © 2023 Society of Chemical Industry.


Assuntos
Calefação , Proteínas , Animais , Temperatura , Carbonilação Proteica , Vácuo , Peixes , Peptídeos , Oxirredução
2.
Food Chem X ; 15: 100389, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211750

RESUMO

In this work, the binding mechanism of myofibrillar protein (MP) with malondialdehyde and 4-hydroxy-2-nonenal under low temperature vacuum heating was investigated via multispectroscopic and molecular docking. The results showed that binding interaction and increasing temperature caused significant changes in the conformations as well as a decrease in the value of protein intrinsic fluorescence, surface hydrophobicity, and fluorescence excitation-emission matrix spectra. Furthermore, the decrease in α-helix and ß-turn, increase in ß-sheet and a random coil of MP, imply the MP molecules to be more unfolded. Isothermal titration calorimetry and molecular docking results showed that main driving force for binding with MP was hydrogen bond, and the binding ability of malondialdehyde was superior to that of 4-hydroxy-2-nonenal. Moreover, increasing the heating temperature was beneficial to the binding reaction and intensified the conformational transition of MP. These results will provide a reference for further studies on the lipid and protein interaction of sturgeon.

3.
J Sci Food Agric ; 102(11): 4609-4619, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35174491

RESUMO

BACKGROUND: Sturgeon is one of the most precious fish resources worldwide. Low temperature vacuum heating (LTVH) has been confirmed as a good way of maintaining food quality. However, there is a lack of in-depth studies assessing the impact of LTVH on lipid oxidation and flavor formation. RESULTS: The present study compared the effect of LTVH and traditional cooking on lipid oxidation and flavor of sturgeon fillets. In total, 13 fatty acids were detected, of which polyunsaturated fatty acids content was the highest (P < 0.05). LTVH prevented the formation of conjugated diene and thiobarbituric acid reactive substances (P < 0.05), as manifested by an increased signal intensity of free radicals of electron spin resonance. The characteristic peaks intensity of lipid by Raman at 970 cm-1 , 1080 cm-1 and 1655 cm-1 were reduced, whereas peaks at 1068 cm-1 and 1125 cm-1 displayed the opposite trend. Confocal fluorescence microscopy showed that the lipids particles were reduced and distributed more evenly with an increase in heating temperature. Principal component analysis of electronic nose cannot effectively separate all groups; however, gas chromatography-ion migration spectrometry showed that the volatile flavor compounds were relatively stable during LTVH. Correlation analysis of all the above lipid oxidation indices and characteristic flavor substances showed that each treatment group was located in different quadrants and demonstrated great differentiation. CONCLUSION: Overall, the results of the present study support the view that LTVH is a healthier way of cooking. © 2022 Society of Chemical Industry.


Assuntos
Ácidos Graxos , Calefação , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura , Vácuo
4.
Food Chem ; 370: 131371, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34656021

RESUMO

This study aimed to reveal the molecular mechanisms associated with off-flavor generation in sturgeon fillets treated by low temperature vacuum heating (LTVH). Label-free quantitative proteomics was used to identify 120 favor-related proteins, 27 proteins were screened as differentially expressed for bioinformatics analysis. 17 of KEGG pathways were identified. Particularly, proteins involved in proteasome and peroxisome were highly correlated with off-flavor formation. They were primarily implicated in the structures of proteins, including binding and proteasome pathways. The results indicated that the LTVH reduced the binding sites by down-regulating protease and superoxide dismutase expression. LTVH increased the myofibrillar protein and sulfhydryl content and decreased the total volatile basic nitrogen and thiobarbituric acid reactive substance, which confirmed that protein oxidation was related to off-flavor. This proteomics study provided new insights into the off-flavor of sturgeon with LTVH, and proposed potential link between biological processes and off-flavor formation.


Assuntos
Calefação , Proteômica , Federação Russa , Temperatura , Vácuo
5.
Food Res Int ; 138(Pt A): 109665, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33292955

RESUMO

Russian sturgeon is a high-quality cultured fish and traditional heating methods may lead to deterioration of its food quality. This study aimed to evaluate the food quality and microbial composition of sturgeon fillets by low temperature vacuum heating (LTVH) and storage at 4 °C. The treatments varied in temperature (50, 60, and 70 °C) and duration (15 and 30 min); samples treated by traditional heating (100 °C, 15 min) methods were included as controls. We found that LTVH could reduce the values of lightness (L*), yellowness (b*), and pH and increase the values of redness (a*), chewiness, and hardness, to promote food quality. The biogenic amine content declined with the increase in heating temperature and time, the histamine of most concern was low at the end of storage, the values of LTVH70-30 and TC was 33.12 ± 1.25 and 30.39 ± 0.86 mg/kg. The total viable count (TVC) and biogenic amines showed the same trend, and the finial TVC values of LTVH60-30, LTVH70-15, LTVH70-30 and TC were 6.72 ± 0.17, 6.33 ± 0.18, 6.18 ± 0.08 and 5.93 ± 0.16 log CFU/g, which did not exceed the limit value (7 log CFU/g), indicating that the biosafety risk was reduced. According to the high-throughput sequencing results, the microbial composition of LTVH samples showed a lesser abundance pseudomonads than that found in the control. Thus, LTVH technology could be used as an alternative to traditional heating treatment.


Assuntos
Qualidade dos Alimentos , Calefação , Animais , Federação Russa , Temperatura , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA