Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38674492

RESUMO

Two important traits of Chinese cabbage, internode length and budding time, destroy the maintenance of rosette leaves in the vegetative growth stage and affect flowering in the reproductive growth stage. Internodes have received much attention and research in rice due to their effect on lodging resistance, but they are rarely studied in Chinese cabbage. In Chinese cabbage, internode elongation affects not only the maintenance of rosette leaves but also bolting and yield. Budding is also an important characteristic of Chinese cabbage entering reproductive growth. Although many studies have reported on flowering and bolting, studies on bud emergence and the timing of budding are scarce. In this study, the mutant lcc induced by EMS (Ethyl Methane Sulfonate) was used to study internode elongation in the seedling stage and late budding in the budding stage. By comparing the gene expression patterns of mutant lcc and wild-type A03, 2280 differentially expressed genes were identified in the seedling stage, 714 differentially expressed genes were identified in the early budding stage, and 1052 differentially expressed genes were identified in the budding stage. Here, the transcript expression patterns of genes in the plant hormone signaling and clock rhythm pathways were investigated in relation to the regulation of internode elongation and budding in Chinese cabbage. In addition, an F2 population was constructed with the mutants lcc and R500. A high-density genetic map with 1602 marker loci was created, and QTLs for internode length and budding time were identified. Specifically, five QTLs for internode length and five QTLs for budding time were obtained. According to transcriptome data analysis, the internode length candidate gene BraA02g005840.3C (PIN8) and budding time candidate genes BraA02g003870.3C (HY5-1) and BraA02g005190.3C (CHS-1) were identified. These findings provide insight into the regulation of internode length and budding time in Chinese cabbage.

2.
Food Chem ; 447: 138895, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492298

RESUMO

Multispectral imaging, combined with stoichiometric values, was used to construct a prediction model to measure changes in dietary fiber (DF) content in Chinese cabbage leaves across different growth periods. Based on all the spectral bands (365-970 nm) and characteristic spectral bands (430, 880, 590, 490, 690 nm), eight quantitative prediction models were established using four machine learning algorithms, namely random forest (RF), backpropagation neural network, radial basis function, and multiple linear regression. Finally, a quantitative prediction model of RF learning algorithm is constructed based on all spectral bands, which has good prediction accuracy and model robustness, prediction performance with R2 of 0.9023, root mean square error (RMSE) of 2.7182 g/100 g, residual predictive deviation (RPD) of 3.1220 > 3.0. In summary, this model efficiently detects changes in DF content across different growth periods of Chinese cabbage, which offers technical support for vegetable sorting and grading in the field.


Assuntos
Algoritmos , Brassica , Redes Neurais de Computação , Verduras , Aprendizado de Máquina
3.
Hortic Res ; 10(7): uhad108, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37577396

RESUMO

Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.

4.
Hortic Res ; 10(8): uhad121, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554342

RESUMO

The genus Brassica contains a rich diversity of species and morphological types, including leaf, root, and oil crops, all of which show substantial phenotypic variation. Both Chinese cabbage and cabbage are typical leaf-type crops with normal roots. We created translocation lines based on interspecific crosses between Chinese cabbage and cabbage and identified qdh225, which exhibited a swollen-root phenotype. The swollen root of qdh225 contained a large number of granular substances, and the formation of its irregular morphological tissue was caused by a thickening of the phloem. Transcriptomic and metabolomic data suggested that differential expression of genes encoding nine types of enzymes involved in starch and sucrose metabolism caused changes in starch synthesis and degradation in the swollen root. These genes jointly regulated sucrose and starch levels, leading to significant enrichment of starch and soluble proteins in the swollen root and a reduction in the content of soluble sugars such as d-glucose and trehalose 6-phosphate. A significant increase in auxin (IAA) and abscisic acid (ABA) contents and a decrease in gibberellin (GA) content in the swollen root likely promoted the differential expression of genes associated with hormone signal transduction, thereby regulating the development of the swollen root. Taken together, our data suggest that accumulation of IAA and ABA and reduction in GA promote swollen root formation by regulating hormone-mediated signaling, leading to a thickening of phloem, root enlargement, and substantial accumulation of starch and soluble proteins. The latter provide materials, energy, and nutrient sources for the development of swollen roots.

5.
Front Genet ; 14: 1164730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152997

RESUMO

Pepper mild mottle virus (PMMoV) poses a significant threat to pepper production because it is highly contagious and extremely persistent in soil. Despite this threat, little is known about the molecular processes that underlie plant responses to pepper mild mottle virus. Here, we performed RNA sequencing of tolerant ("17-p63") and susceptible ("16-217") pepper genotypes after pepper mild mottle virus or mock inoculation. Viral accumulation in systemic leaves was lower in the pepper mild mottle virus-resistant 17-p63 genotype than in the pepper mild mottle virus-sensitive 16-217 genotype, and infection symptoms were more apparent in systemic leaves of 16-217 than in those of 17-p63 at the same timepoints during the infection process. We identified 2,959 and 2,159 differentially expressed genes (DEGs) in systemic leaves of infected 16-217 and 17-p63, respectively. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes from both genotypes revealed significant enrichment of the MAPK signaling pathway, plant-pathogen interaction, and flavonoid biosynthesis. A number of differentially expressed genes showed opposite trends in relation to stress resistance and disease defense in the two genotypes. We also performed weighted gene co-expression network analysis (WGCNA) of all samples and identified modules associated with resistance to pepper mild mottle virus, as well as seven hub genes. These results identify candidate virus resistance genes and provide insight into pepper defense mechanisms against pepper mild mottle virus.

6.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982682

RESUMO

Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technology that has evolved into an indispensable approach for analyzing the function of genes. It downregulates endogenous genes by utilizing the posttranscriptional gene silencing (PTGS) machinery of plants to prevent systemic viral infections. Based on recent advances, VIGS can now be used as a high-throughput tool that induces heritable epigenetic modifications in plants through the viral genome by transiently knocking down targeted gene expression. As a result of the progression of DNA methylation induced by VIGS, new stable genotypes with desired traits are being developed in plants. In plants, RNA-directed DNA methylation (RdDM) is a mechanism where epigenetic modifiers are guided to target loci by small RNAs, which play a major role in the silencing of the target gene. In this review, we described the molecular mechanisms of DNA and RNA-based viral vectors and the knowledge obtained through altering the genes in the studied plants that are not usually accessible to transgenic techniques. We showed how VIGS-induced gene silencing can be used to characterize transgenerational gene function(s) and altered epigenetic marks, which can improve future plant breeding programs.


Assuntos
Inativação Gênica , Vírus de Plantas , Melhoramento Vegetal , Epigênese Genética , Interferência de RNA , Plantas/genética , Vetores Genéticos , RNA , Vírus de Plantas/genética , Regulação da Expressão Gênica de Plantas
7.
J Adv Res ; 53: 49-59, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36581197

RESUMO

BACKGROUND: Heading is an important agronomic feature for Chinese cabbage, cabbage, and lettuce. The heading leaves function as nutrition storage organs, which contribute to the high quality and economic worth of leafy heads. Leaf development is crucial during the heading stage, most genes previously predicted to be involved in the heading process are based on Arabidopsis leaf development studies. AIM OF REVIEW: Till date, there is no published review article that demonstrated a complete layout of all the identified regulators of leaf curvature and heading. In this review, we have summarized all the identified physiological and genetic regulators that are directly or indirectly involved in leaf curvature and heading in Brassica crops. By integrating all identified regulators that provide a coherent logic of leaf incurvature and heading, we proposed a molecular mechanism in Brassica crops with graphical illustrations. This review adds value to future breeding of distinct heading kinds of cabbage and Chinese cabbage by providing unique insights into leaf development. KEY SCIENTIFIC CONCEPTS OF REVIEW: Leaf curvature and heading are established by synergistic interactions among genes, transcription factors, microRNAs, phytohormones, and environmental stimuli that regulate primary and secondary morphogenesis. Various genes have been identified using transformation and genome editing that are responsible for the formation of leaf curvature and heading in Brassica crops. A range of leaf morphologies have been observed in Brassica, which are established because of the mutated determinants that are responsible for cell division and leaf polarity.


Assuntos
Arabidopsis , Brassica rapa , Brassica , Brassica rapa/genética , Proteínas de Plantas/genética , Melhoramento Vegetal , Brassica/genética , Folhas de Planta/genética
8.
Front Plant Sci ; 14: 1282661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169942

RESUMO

Eggplant (Solanum melongena L.) is a highly nutritious and economically important vegetable crop. However, the fruit peel of eggplant often shows poor coloration owing to low-light intensity during cultivation, especially in the winter. The less-photosensitive varieties produce anthocyanin in low light or even dark conditions, making them valuable breeding materials. Nevertheless, genes responsible for anthocyanin biosynthesis in less-photosensitive eggplant varieties are not characterized. In this study, an EMS mutant, named purple in the dark (pind), was used to identify the key genes responsible for less-photosensitive coloration. Under natural conditions, the peel color and anthocyanin content in pind fruits were similar to that of wildtype '14-345'. The bagged pind fruits were light purple, whereas those of '14-345' were white; and the anthocyanin content in the pind fruit peel was significantly higher than that in '14-345'. Genetic analysis revealed that the less-photosensitive trait was controlled by a single dominant gene. The candidate gene was mapped on chromosome 10 in the region 7.72 Mb to 11.71 Mb. Thirty-five differentially expressed genes, including 12 structural genes, such as CHS, CHI, F3H, DFR, ANS, and UFGT, and three transcription factors MYB113, GL3, and TTG2, were identified in pind using RNA-seq. Four candidate genes EGP21875 (myb domain protein 113), EGP21950 (unknown protein), EGP21953 (CAAX amino-terminal protease family protein), and EGP21961 (CAAX amino-terminal protease family protein) were identified as putative genes associated with less-photosensitive anthocyanin biosynthesis in pind. These findings may clarify the molecular mechanisms underlying less-photosensitive anthocyanin biosynthesis in eggplant.

9.
Cell Rep ; 41(10): 111758, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476857

RESUMO

The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis.


Assuntos
Brassica , Ferroquelatase , Ferroquelatase/genética , Heme , Brassica/genética , Clorofila A , Mutação/genética
10.
Genome Biol ; 23(1): 262, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536447

RESUMO

BACKGROUND: Chinese cabbage (Brassica rapa ssp. pekinensis) experienced a whole-genome triplication event and thus has three subgenomes: least fractioned, medium fractioned, and most fractioned subgenome. Environmental changes affect leaf development, which in turn influence the yield. To improve the yield and resistance to different climate scenarios, a comprehensive understanding of leaf development is required including insights into the full diversity of cell types and transcriptional networks underlying their specificity. RESULTS: Here, we generate the transcriptional landscape of Chinese cabbage leaf at single-cell resolution by performing single-cell RNA sequencing of 30,000 individual cells. We characterize seven major cell types with 19 transcriptionally distinct cell clusters based on the expression of the reported marker genes. We find that genes in the least fractioned subgenome are predominantly expressed compared with those in the medium and most fractioned subgenomes in different cell types. Moreover, we generate a single-cell transcriptional map of leaves in response to high temperature. We find that heat stress not only affects gene expression in a cell type-specific manner but also impacts subgenome dominance. CONCLUSIONS: Our study highlights the transcriptional networks in different cell types and provides a better understanding of transcriptional regulation during leaf development and transcriptional response to heat stress in Chinese cabbage.


Assuntos
Brassica rapa , Resposta ao Choque Térmico , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Transcriptoma
11.
Front Plant Sci ; 13: 1083409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523629

RESUMO

The TIR1/AFB family of proteins is a group of functionally diverse auxin receptors that are only found in plants. TIR1/AFB family members are characterized by a conserved N-terminal F-box domain followed by 18 leucine-rich repeats. In the past few decades, extensive research has been conducted on the role of these proteins in regulating plant development, metabolism, and responses to abiotic and biotic stress. In this review, we focus on TIR1/AFB proteins that play crucial roles in plant responses to diverse abiotic and biotic stress. We highlight studies that have shed light on the mechanisms by which TIR1/AFB proteins are regulated at the transcriptional and post-transcriptional as well as the downstream in abiotic or biotic stress pathways regulated by the TIR1/AFB family.

12.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430495

RESUMO

Cyclins are involved in cell division and proliferation by activating enzymes required for the cell cycle progression. Our genome-wide analysis identified 76 cyclin genes in Brassica rapa, which were divided into nine different types (A-, B-, C-, D-, H-, L-, P-, T-, and SDS-type). Cyclin genes were unevenly scattered on all chromosomes, with a maximum of 10 on A08 and a minimum of 2 on A04. The gene structure and conserved motif analysis showed that the cyclins which belonged to the same type or subgroup have a comparable intron/exon pattern or motif. A total of 14 collinear gene pairs suggested that the B. rapa cyclin genes experienced a mass of segmental duplication. The Ka/Ks analysis revealed that the Brcyclin gene family has undergone an extensive purifying pressure. By analyzing the cis-elements in the promoters, we identified 11 cis-elements and five of them are related to the hormone response. We observed 48 potential miRNAs targeting 44 Brcyclin genes, which highlighted the involvement of miRNAs in the regulation of cyclin genes. An association analysis between the leaf size and SNPs in mutants and a transcriptome analysis of two Chinese cabbage-cabbage translocation lines also showed that the Brcyclin gene family was involved in the development of the leaves. The functional characterization of the B. rapa cyclin gene family will provide the foundation for future physiological and genetic studies in the regulation of leaf growth.


Assuntos
Brassica rapa , MicroRNAs , Brassica rapa/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Transcriptoma , Mapeamento Cromossômico , Filogenia , Perfilação da Expressão Gênica , MicroRNAs/metabolismo
13.
Pest Manag Sci ; 78(12): 5113-5123, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36053852

RESUMO

BACKGROUND: Western flower thrips are considered the major insect pest of horticultural crops worldwide, causing economic and yield loss to Solanaceae crops. The eggplant (Solanum melongena L.) resistance against thrips remains largely unexplored. This work aims to identify thrips-resistant eggplants and dissect the molecular mechanisms underlying this resistance using the integrated metabolomic and transcriptomic analyses of thrips-resistant and -susceptible cultivars. RESULTS: We developed a micro-cage thrips bioassay to identify thrips-resistant eggplant cultivars, and highly resistant cultivars were identified from wild eggplant relatives. Metabolomic profiles of thrips-resistant and -susceptible eggplant were compared using the gas chromatography-mass spectrometry (GC-MS)-based approach, resulting in the identification of a higher amount of quinic acid in thrips-resistant eggplant compared to the thrips-susceptible plant. RNA-sequencing analysis identified differentially expressed genes (DEGs) by comparing genome-wide gene expression changes between thrips-resistant and -susceptible eggplants. Consistent with metabolomic analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs revealed that the starch and sucrose metabolic pathway in which quinic acid is a metabolic by-product was highly enriched. External application of quinic acid enhances the resistance of susceptible eggplant to thrips. CONCLUSION: Our results showed that quinic acid plays a key role in the resistance to thrips. These findings highlight a potential application of quinic acid as a biocontrol agent to manage thrips and expand our knowledge to breed thrips-resistant eggplant. © 2022 Society of Chemical Industry.


Assuntos
Solanum melongena , Tisanópteros , Animais , Solanum melongena/genética , Solanum melongena/metabolismo , Tisanópteros/genética , Ácido Quínico/metabolismo , Transcriptoma , Melhoramento Vegetal , Flores
14.
Cells ; 11(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954158

RESUMO

Heat shock proteins protect plants from abiotic stress, such as salt, drought, heat, and cold stress. HSP70 is one of the major members of the heat shock protein family. To explore the mechanism of HSP70 in Brassica rapa, we identified 28 putative HSP70 gene family members using state-of-the-art bioinformatics-based tools and methods. Based on chromosomal mapping, HSP70 genes were the most differentially distributed on chromosome A03 and the least distributed on chromosome A05. Ka/Ks analysis revealed that B. rapa evolution was subjected to intense purifying selection of the HSP70 gene family. RNA-sequencing data and expression profiling showed that heat and cold stress induced HSP70 genes. The qRT-PCR results verified that the HSP70 genes in Chinese cabbage (Brassica rapa ssp. pekinensis) are stress-inducible under both cold and heat stress. The upregulated expression pattern of these genes indicated the potential of HSP70 to mitigate environmental stress. These findings further explain the molecular mechanism underlying the responses of HSP70 to heat and cold stress.


Assuntos
Brassica rapa , Brassica rapa/genética , Brassica rapa/metabolismo , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955637

RESUMO

With the burgeoning population of the world, the successful germination of seeds to achieve maximum crop production is very important. Seed germination is a precise balance of phytohormones, light, and temperature that induces endosperm decay. Abscisic acid and gibberellins-mainly with auxins, ethylene, and jasmonic and salicylic acid through interdependent molecular pathways-lead to the rupture of the seed testa, after which the radicle protrudes out and the endosperm provides nutrients according to its growing energy demand. The incident light wavelength and low and supra-optimal temperature modulates phytohormone signaling pathways that induce the synthesis of ROS, which results in the maintenance of seed dormancy and germination. In this review, we have summarized in detail the biochemical and molecular processes occurring in the seed that lead to the germination of the seed. Moreover, an accurate explanation in chronological order of how phytohormones inside the seed act in accordance with the temperature and light signals from outside to degenerate the seed testa for the thriving seed's germination has also been discussed.


Assuntos
Germinação , Reguladores de Crescimento de Plantas , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Dormência de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Sementes/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(34): e2208978119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969746

RESUMO

Heading is one of the most important agronomic traits for Chinese cabbage crops. During the heading stage, leaf axial growth is an essential process. In the past, most genes predicted to be involved in the heading process have been based on leaf development studies in Arabidopsis. No genes that control leaf axial growth have been mapped and cloned via forward genetics in Chinese cabbage. In this study, we characterize the inward curling mutant ic1 in Brassica rapa ssp. pekinensis and identify a mutation in the OCTOPUS (BrOPS) gene by map-based cloning. OPS is involved in phloem differentiation in Arabidopsis, a functionalization of regulating leaf curvature that is differentiated in Chinese cabbage. In the presence of brassinosteroid (BR) at the early heading stage in ic1, the mutation of BrOPS fails to sequester brassinosteroid insensitive 2 (BrBIN2) from the nucleus, allowing BrBIN2 to phosphorylate and inactivate BrBES1, which in turn relieves the repression of BrAS1 and results in leaf inward curving. Taken together, the results of our findings indicate that BrOPS positively regulates BR signaling by antagonizing BrBIN2 to promote leaf epinastic growth at the early heading stage in Chinese cabbage.


Assuntos
Brassica , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassica/genética , Brassica/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas Quinases/genética
17.
Plant J ; 111(4): 1096-1109, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749258

RESUMO

Anthocyanins are important pigments that impart color in plants. In Solanum, different species display various fruit or flower colors due to varying degrees of anthocyanin accumulation. Here we identified two anthocyanin-free mutants from an ethylmethane sulfonate-induced mutant library and naturally occurring mutants in Solanum melongena, with mutations in the 5' splicing site of the second intron of dihydroflavonol-4-reductase (DFR) - leading to altered splicing. Further study revealed that alternative splicing of the second intron was closely related to anthocyanin accumulation in 17 accessions from three cultivated species: S. melongena, Solanum macrocarpon and Solanum aethiopicum, and their wild related species. Analysis of natural variations of DFR, using an expanded population including 282 accessions belonging to the spiny Solanum group, identified a single-nucleotide polymorphism in the MYB recognition site in the promoter region, which causes differential expression of DFR and affects anthocyanin accumulation in fruits of the detected accessions. Our study suggests that, owing to years of domestication, the natural variation in the DFR promoter region and the alternative splicing of the DFR gene account for altered anthocyanin accumulation during spiny Solanum domestication.


Assuntos
Antocianinas , Solanum , Oxirredutases do Álcool , Processamento Alternativo/genética , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Solanum/genética , Solanum/metabolismo
18.
Mol Plant ; 15(5): 913-924, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35150930

RESUMO

Chinese cabbage (Brassica rapa ssp. pekinensis) is an economically important vegetable crop throughout the world, especially in Asia. High-quality genome sequences are available for Chinese cabbage, but gene functional studies remain challenging. To promote functional genomic studies of Chinese cabbage, we generated an ethyl methane sulfonate (EMS) mutant population of ∼8000 M2 plants using the double haploid inbred line A03 as the parent. The genome of A03 was sequenced and used as a reference for high-throughput functional characterization of gene mutations at the whole-genome level. A total of 300 M2 to M5 EMS mutants were phenotypically screened and then sequenced, revealing 750 629 SNPs and 46 272 InDel mutations that cover 98.27% of all predicted genes in the A03 genome. A forward-genetics approach was successfully used to identify two genes with chloroplast-related functions that are responsible for the yellow leaf mutant trait. A reverse-genetics approach was also used to identify associations between mutations in five genes of the glucosinolate biosynthetic pathway and variations in glucosinolate content of the mutant plants. In addition, we built the Chinese cabbage EMS mutation database (CCEMD, www.bioinformaticslab.cn/EMSmutation/home) to increase the usability of this mutant population resource. In summary, we performed large-scale screening of a heading Chinese cabbage EMS mutant collection at the phenotypic and genotypic levels, which will facilitate gene mining of Chinese cabbage and might also be useful for the study of other Brassica crops.


Assuntos
Brassica , Glucosinolatos , Brassica/genética , China , Genótipo , Fenótipo
19.
Plant Phenomics ; 2022: 0007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37266137

RESUMO

The phenotypic parameters of crop plants can be evaluated accurately and quickly using an unmanned aerial vehicle (UAV) equipped with imaging equipment. In this study, hundreds of images of Chinese cabbage (Brassica rapa L. ssp. pekinensis) germplasm resources were collected with a low-cost UAV system and used to estimate cabbage width, length, and relative chlorophyll content (soil plant analysis development [SPAD] value). The super-resolution generative adversarial network (SRGAN) was used to improve the resolution of the original image, and the semantic segmentation network Unity Networking (UNet) was used to process images for the segmentation of each individual Chinese cabbage. Finally, the actual length and width were calculated on the basis of the pixel value of the individual cabbage and the ground sampling distance. The SPAD value of Chinese cabbage was also analyzed on the basis of an RGB image of a single cabbage after background removal. After comparison of various models, the model in which visible images were enhanced with SRGAN showed the best performance. With the validation set and the UNet model, the segmentation accuracy was 94.43%. For Chinese cabbage dimensions, the model was better at estimating length than width. The R2 of the visible-band model with images enhanced using SRGAN was greater than 0.84. For SPAD prediction, the R2 of the model with images enhanced with SRGAN was greater than 0.78. The root mean square errors of the 3 semantic segmentation network models were all less than 2.18. The results showed that the width, length, and SPAD value of Chinese cabbage predicted using UAV imaging were comparable to those obtained from manual measurements in the field. Overall, this research demonstrates not only that UAVs are useful for acquiring quantitative phenotypic data on Chinese cabbage but also that a regression model can provide reliable SPAD predictions. This approach offers a reliable and convenient phenotyping tool for the investigation of Chinese cabbage breeding traits.

20.
Hortic Res ; 8(1): 106, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33931629

RESUMO

The agricultural and consumer quality of Chinese cabbage is determined by its shape. The shape is defined by the folding of the heading leaves, which defines the head top shape (HTS). The overlapping HTS, in which the heading leaves curve inward and overlap at the top, is the shape preferred by consumers. To understand the genetic regulation of HTS, we generated a large segregating F2 population from a cross between pak choi and Chinese cabbage, with phenotypes ranging from nonheading to heading with either outward curving or inward curving overlapping heading leaves. HTS was correlated with plant height, outer/rosette leaf length, and petiole length. A high-density genetic map was constructed. Quantitative trait locus (QTL) analysis resulted in the identification of 22 QTLs for leafy head-related traits, which included five HTS QTLs. Bulked segregant analysis (BSA) was used to confirm HTS QTLs and identify candidate genes based on informative single-nucleotide polymorphisms. Interestingly, the HTS QTLs colocalized with QTLs for plant height, outer/rosette leaf, and petiole length, consistent with the observed phenotypic correlations. Combined QTL analysis and BSA laid a foundation for molecular marker-assisted breeding of Chinese cabbage HTS and directions for further research on the genetic regulation of this trait.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA