Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 488, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773576

RESUMO

Ulcerative colitis (UC) is an idiopathic, chronic inflammatory condition of the colon, characterized by repeated attacks, a lack of effective treatment options, and significant physical and mental health complications for patients. The endoplasmic reticulum (ER) is a vital intracellular organelle in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is induced when the body is exposed to adverse external stimuli. Numerous studies have shown that ERS-induced apoptosis plays a vital role in the pathogenesis of UC. Mogroside V (MV), an active ingredient of Monk fruit, has demonstrated excellent anti-inflammatory and antioxidant effects. In this study, we investigated the therapeutic effects of MV on dextran sulfate sodium (DSS)-induced UC and its potential mechanisms based on ERS. The results showed that MV exerted a protective effect against DSS-induced UC in mice as reflected by reduced DAI scores, increased colon length, reduced histological scores of the colon, and levels of pro-inflammatory cytokines, as well as decreased intestinal permeability. In addition, the expression of ERS pathway including BIP, PERK, eIF2α, ATF4, CHOP, as well as the apoptosis-related protein including Caspase-12, Bcl-2 and Bax, was found to be elevated in UC. However, MV treatment significantly inhibited the UC and reversed the expression of inflammation signaling pathway including ERS and ERS-induced apoptosis. Additionally, the addition of tunicamycin (Tm), an ERS activator, significantly weakened the therapeutic effect of MV on UC in mice. These findings suggest that MV may be a therapeutic agent for the treatment of DSS-induced UC by inhibiting the activation of the ERS-apoptosis pathway, and may provide a novel avenue for the treatment of UC.


Assuntos
Apoptose , Colite Ulcerativa , Sulfato de Dextrana , Estresse do Retículo Endoplasmático , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Apoptose/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Colo/patologia , Colo/efeitos dos fármacos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Camundongos , Citocinas/metabolismo , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Exp Cell Res ; 424(1): 113472, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634742

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disease involving the digestive tract, characterized by abdominal pain, diarrhea, rectal bleeding, and so on, which can make patients physically weakened and live difficultly. Although IBD has been recognized for many years, the pathogenesis of IBD has not yet been established and damage to intestinal barrier is thought to be closely associated with IBD. Intestinal barrier is an innate barrier that maintains the homeostasis of the intestinal environment and impedes pathogenic bacteria and toxins, and the endoplasmic reticulum (ER) has recently been found to be involved in maintaining the integrity of intestinal barrier. Endoplasmic reticulum stress (ERS) is a status of endoplasmic reticulum damaged when unfolded or misfolded proteins accumulate in excess of the degradation systematic clearance limit of the misfolded proteins. The regulation of ERS on protein folding synthesis and maintenance of cellular homeostasis is an important factor in influencing the integrity of the intestinal barrier. This paper mainly discusses the relationship between ERS and the intestinal barrier, aiming to understand the regulatory role of ERS on the intestinal barrier and the mechanism and to improve new solutions and notions for the treatment or prevention of IBD.


Assuntos
Estresse do Retículo Endoplasmático , Doenças Inflamatórias Intestinais , Humanos , Estresse do Retículo Endoplasmático/fisiologia , Intestinos , Doenças Inflamatórias Intestinais/metabolismo , Dobramento de Proteína , Retículo Endoplasmático/metabolismo , Mucosa Intestinal/metabolismo , Resposta a Proteínas não Dobradas
3.
Food Funct ; 12(24): 12621-12633, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34821232

RESUMO

Baicalin is a plant-derived flavonoid from Scutellaria baicalensis Georgi with multiple bioactivities and has a protective effect against avian pathogenic Escherichia coli (APEC) infection. However, the underlying mechanism of baicalin against APEC infection is still unknown. Therefore, we aimed to explore whether the protective effects and mechanisms of baicalin on APEC-induced lung inflammation were related to the regulation of gut microbiota. The results showed that baicalin significantly reduced APEC colonization and pro-inflammatory cytokines production, and additionally recovered air-blood barrier integrity in the lungs after APEC challenge. However, depletion of gut microbiota significantly weakened the protective effects of baicalin against APEC infection as mentioned above. Furthermore, baicalin markedly restored the dysbiosis of gut microbiota induced by APEC as well as increased the abundance of short chain fatty acid (SCFA)-producing bacteria and the production of SCFAs including acetic acid, propionic acid and butyric acid, especially acetic acid. In addition, the concentrations of acetic acid and its receptor free fatty acid receptor 2 (FFAR2) were significantly upregulated in the lung tissues after baicalin treatment. In conclusion, gut microbiota played a key role in the pharmacological action of baicalin against APEC-induced lung inflammation. Baicalin remodeled the dysbiosis of gut microbiota caused by APEC and increased the production of SCFAs, especially acetic acid in the gut, and then the increased acetate may circulate to the lungs to activate FFAR2 to defend APEC infection. Together, our study suggested that baicalin inhibited APEC infection through remodeling the gut microbiota dysbiosis and increasing the SCFA production. Furthermore, baicalin may serve as an alternative antibiotic and a novel therapeutic drug to prevent or treat APEC infection.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Infecções por Escherichia coli/complicações , Ácidos Graxos Voláteis/metabolismo , Flavonoides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Lesão Pulmonar/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Galinhas , Modelos Animais de Doenças , Infecções por Escherichia coli/metabolismo , Flavonoides/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA