Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Dig Dis Sci ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824257

RESUMO

INTRODUCTION: Previous studies have demonstrated that Dual-specificity phosphatase 4 (DUSP4) plays an important role in the progression of different tumor types. However, the role and mechanism of DUSP4 in colorectal cancer (CRC) remain unclear. AIMS: We investigate the role and mechanisms of DUSP4 in CRC. METHODS: Immunohistochemistry was used to investigate DUSP4 expression in CRC tissues. Cell proliferation, apoptosis and migration assays were used to validate DUSP4 function in vitro and in vivo. RNA-sequence assay was used to identify the target genes of DUSP4. Human phosphokinase array and inhibitor assays were used to explore the downstream signaling of DUSP4. RESULTS: DUSP4 expression was upregulated in CRC tissues relative to normal colorectal tissues, and DUSP4 expression showed a significant positive correlation with CRC stage. Consistently, we found that DUSP4 was highly expressed in colorectal cancer cells compared to normal cells. DUSP4 knockdown inhibits CRC cell proliferation, migration and promotes apoptosis. Furthermore, the ectopic expression of DUSP4 enhanced CRC cell proliferation, migration and diminished apoptosis in vitro and in vivo. Human phosphokinase array data showed that ectopic expression of DUSP4 promotes CREB activation. RNA-sequencing data showed that PRKACB acts as a downstream target gene of DUSP4/CREB and enhances CREB activation through PKA/cAMP signaling. In addition, xenograft model results demonstrated that DUSP4 promotes colorectal tumor progression via PRKACB/CREB activation in vivo. CONCLUSION: These findings suggest that DUSP4 promotes CRC progression. Therefore, it may be a promising therapeutic target for CRC.

2.
J Am Heart Assoc ; 13(7): e033779, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38533964

RESUMO

BACKGROUND: This study aimed to investigate the predictive value of parameters of every precordial lead and their combinations in differentiating between idiopathic ventricular arrhythmias (IVAs) from the right ventricular outflow tract and aortic sinus of Valsalva (ASV). METHODS AND RESULTS: Between March 1, 2018, and December 1, 2021, consecutive patients receiving successful ablation of right ventricular outflow tract or ASV IVAs were enrolled. The amplitude and duration of the R wave and S wave were measured in every precordial lead during IVAs. These parameters were either summed, subtracted, multiplied, or divided to create different indexes. The index with the highest area under the curve to predict ASV IVAs was developed, compared with established indexes, and validated in an independent prospective multicenter cohort. A total of 150 patients (60 men; mean age, 45.3±16.4 years) were included in the derivation cohort. The RV1+RV3 index (summed R-wave amplitude in leads V1 and V3) had the highest area under the curve (0.942) among the established indexes. An RV1+RV3 index >1.3 mV could predict ASV IVAs with a sensitivity of 95% and a specificity of 83%. Its predictive performance was maintained in the validation cohort (N=109). In patients with V3 R/S transition, an RV1+RV3 index >1.3 mV could predict ASV IVAs, with an area under the curve of 0.892, 93% sensitivity, and 75% specificity. CONCLUSIONS: The RV1+RV3 index is a simple and novel criterion that accurately differentiates between right ventricular outflow tract and ASV IVAs. Its performance outperformed established indexes, making it a valuable tool in clinical practice.


Assuntos
Ablação por Cateter , Seio Aórtico , Taquicardia Ventricular , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Seio Aórtico/diagnóstico por imagem , Seio Aórtico/cirurgia , Eletrocardiografia/métodos , Ablação por Cateter/métodos , Arritmias Cardíacas , Ventrículos do Coração , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/cirurgia
3.
J Cancer ; 15(5): 1255-1256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356710

RESUMO

[This corrects the article DOI: 10.7150/jca.66773.].

4.
Cell Commun Signal ; 21(1): 316, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924113

RESUMO

G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multifunctional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family members. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we summarize the expression changes of each RGS family member in various human cancers and their important roles in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, we outline the molecular signalling pathways in which some RGS family members are involved in tumour progression. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers and the main possible problems for clinical application at present are discussed. Our review provides a comprehensive understanding of the role and potential mechanisms of RGS in regulating tumour progression. Video Abstract.


Assuntos
Neoplasias , Proteínas RGS , Humanos , Transdução de Sinais , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
Front Genet ; 14: 1240650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600654

RESUMO

Human choline dehydrogenase (CHDH) is a transmembrane protein located in mitochondria. CHDH has been shown to be one of the important catalytic enzymes that catalyze the oxidation of choline to betaine and is involved in mitochondrial autophagy after mitochondrial damage. In recent years, an increasing number of studies have focused on CHDH and found a close association with the pathogenesis of various diseases, including tumor prognosis. Here we summarized the genomic localization, protein structure and basic functions of CHDH and discuss the progress of CHDH research in metabolic disorders and other diseases. Moreover, we described the regulatory role of CHDH on the progression of different types of malignant tumors. In addition, major pathogenic mechanisms of CHDH in multiple diseases may be associated with single nucleotide polymorphism (SNP). We look forward to providing new strategies and basis for clinical diagnosis and prognosis prediction of diseases by diagnosing SNP loci of CHDH genes. Our work evaluates the feasibility of CHDH as a molecular marker relevant to the diagnosis of some metabolic disorders diseases and tumors, which may provide new targets for the treatment of related diseases and tumors.

6.
Cell Oncol (Dordr) ; 46(5): 1269-1283, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37067748

RESUMO

PURPOSE: Previous studies have shown that TBX21 (T-Box Transcription Factor 21) plays a vital role in coordinating multiple aspects of the immune response especially type 1 immune response as well as tumor progression. However, the function of TBX21 in colorectal cancer (CRC) remains unclear. METHODS: IHC to investigate TBX21 expression in CRC tissues. Cell proliferation and apoptosis assays to validate TBX21 function in vitro and in vivo. RNA-seq assay to explore target genes of TBX21. Human phospho-kinase array assay to explore down-stream signaling of TBX21. RESULTS: We disclosed that the expression of TBX21 was marked decreased in CRC versus normal tissue, and negatively correlated with CRC TNM stages. Surprisingly, we found that the CRC and normal cell lines show no TBX21 expression levels. Ectopic expression of TBX21 inhibited cell proliferation and promoted cell apoptosis in vitro. Moreover, RNA-sequence data first time showed that ARHGAP29 acts as the target gene of TBX21 to mediate down-stream signaling activation. Human phospho-kinase array data first time displayed that ectopic expression of TBX21 reduced kinase RSK and GSK3ß activation. In contrast, knocked down the expression of TBX21 or ARHGAP29 alternatively abolished TBX21 mediated cell proliferation suppression, cell apoptosis enhancement and RSK/GSK3ß activation. In addition, xenograft model studies demonstrated that TBX21 inhibits colorectal tumor progression via ARHGAP29/ RSK/ GSK3ß signaling in vivo. CONCLUSIONS: In summary, the aforementioned findings suggest a model of TBX21 in suppressing CRC progression. This may provide a promising target for CRC therapy.


Assuntos
Neoplasias Colorretais , Humanos , Apoptose/genética , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Transdução de Sinais , Proteínas Quinases S6 Ribossômicas 90-kDa
7.
BMC Cancer ; 23(1): 52, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647029

RESUMO

BACKGROUND: TGF-ß-induced factor homeobox 2 (TGIF2) is a transcription regulator that is phosphorylated by EGFR/ERK signaling. However, the functions of phosphorylated (p)-TGIF2 in cancer are largely unknown. Here, we investigated the roles of p-TGIF2 in promoting epithelial-mesenchymal transition (EMT) and metastasis in lung adenocarcinoma (LUAD). METHODS: In vitro and in vivo experiments were conducted to investigate the role of TGIF2 in LUAD EMT and metastasis. Dual-luciferase reporter and ChIP assays were employed to observe the direct transcriptional regulation of E-cadherin by TGIF2 and HDAC1. Co-immunoprecipitation was performed to identify the interaction between TGIF2 and HDAC1. RESULTS: Downregulating the expression of TGIF2 inhibited LUAD cell migration, EMT and metastasis in vitro and in vivo. Phosphorylation of TGIF2 by EGFR/ERK signaling was required for TGIF2-promoted LUAD EMT and metastasis since phosphorylation-deficient TGIF2 mutant lost these functions. Phosphorylation of TGIF2 was necessary to recruit HDAC1 to the E-cadherin promoter sequence and subsequently suppress E-cadherin transcription. Meanwhile, inhibition of HDAC1 repressed the TGIF2 phosphorylation-induced migration and EMT of LUAD cells. In xenograft mouse models, both inhibition of ERK and HDAC1 could significantly inhibited TGIF2-enhanced metastasis. Furthermore, TGIF2-positive staining was significantly correlated with E-cadherin-negative staining in human lung cancer specimens. CONCLUSIONS: Our study reveals the novel function of p-TGIF2 in promoting EMT and metastasis in LUAD; p-TGIF2 could be a potential therapeutic target to inhibit LUAD metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Transição Epitelial-Mesenquimal/genética , Fosforilação , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Caderinas/genética , Caderinas/metabolismo , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
8.
Front Oncol ; 12: 1012090, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505776

RESUMO

Inorganic pyrophosphatase (PPA1) encoded by PPA1 gene belongs to Soluble Pyrophosphatases (PPase) family and is expressed widely in various tissues of Homo sapiens, as well as significantly in a variety of malignancies. The hydrolysis of inorganic pyrophosphate (PPi) to produce orthophosphate (Pi) not only dissipates the negative effects of PPi accumulation, but the energy released by this process also serves as a substitute for ATP. PPA1 is highly expressed in a variety of tumors and is involved in proliferation, invasion, and metastasis during tumor development, through the JNK/p53, Wnt/ß-catenin, and PI3K/AKT/GSK-3ß signaling pathways. Because of its remarkable role in tumor development, PPA1 may serve as a biological target for adjuvant therapy of tumor malignancies. Further, PPA1 is a potential biomarker to predict survival in patients with cancer, where the assessment of its transcriptional regulation can provide an in-depth understanding. Herein, we describe the signaling pathways through which PPA1 regulates malignant tumor progression and provide new insights to establish PPA1 as a biomarker for tumor diagnosis.

9.
Food Chem Toxicol ; 169: 113422, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108984

RESUMO

The rising obesity epidemic in developed countries is associated with many chronic inflammatory diseases including atherosclerosis and nonalcoholic steatohepatitis (NASH). Consuming aucubin may benefit health by suppressing inflammation. Herein, we studied the effects of aucubin consumption on atherosclerosis and NASH progression induced by high-fat diet (HFD) in LDL receptor deficient (LDLr-/-) mice. Adult LDLr-/- mice were fed with HFD for 12 weeks and received oral administration of aucubin for the last 6 weeks. Aucubin did not alter body weight or dyslipidemia, but lowered hyperglycemia and mitigated HFD-induced atherosclerosis and hepatic impairments in LDLr-/- mice. Aucubin administration inhibited HFD-induced inflammation and downregulated mRNA and protein expression of stimulator of IFN genes (STING) in both aortas and livers of LDLr-/- mice. In vitro, aucubin suppressed mitochondrial DNA (mtDNA)-induced activation of STING/NFκB pathway and downregulated gene expression of pro-inflammatory cytokines in cultured bone marrow-derived macrophages (BMDM). Furthermore, aucubin enhanced microRNA-181a-5p (miR-181a-5p) levels in both aortas and livers of LDLr-/- mice. Importantly, miR-181a-5p mimicked the inhibitory effect of aucubin on STING/NFκB pathway and inflammation in BMDM. In conclusion, aucubin consumption attenuated HFD-induced atherosclerosis and NASH progression in LDLr-/- mice, possibly through modulating miR-181a-5p/STING and inhibiting inflammation.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Glucosídeos Iridoides , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , DNA Mitocondrial , Inflamação/tratamento farmacológico , Glucosídeos Iridoides/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Receptores de LDL/genética , RNA Mensageiro
10.
J Interv Card Electrophysiol ; 65(3): 725-729, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35932444

RESUMO

BACKGROUND: Late recurrence after ablation remains a significant issue in patients with premature ventricular complexes (PVCs) who undergo catheter ablation. In this study, we aimed to test the hypothesis that empirical additional ablation (EAA) would improve the long-term control of PVCs from outflow tracts (OT-PVCs) compared with the approach of limited single point ablation at the assumptive location. METHODS: EASE-PVC study (ChiCTR2200055340) is a prospective multi-center, randomized, and controlled trial designed to assess the effectiveness and safety of empirical additional ablation in patients with OT-PVCs. After successful elimination of OT-PVCs, the patients will be randomized into two groups. In patients randomized to the EAA group, additional lesion applications at sites surrounding the successful ablation site will be delivered empirically. For patients randomized to the control group, no additional empiric ablation will be performed around the successful ablation site. The primary endpoint will be freedom from PVC recurrence at 3 months following ablation, without antiarrhythmic drug therapy. CONCLUSIONS: The EASE-PVC study is designed to compare the effectiveness and safety of two different strategies for ablation in patients with OT-PVCs, namely empirical additional ablation strategy versus conventional single point ablation strategy. This prospective, multi-center, and randomized controlled trial, with comparative data evaluating procedural and long-term follow-up results, aims to elucidate the superiority of empirical additional ablation for the long-term control of OT-PVCs compared with the traditional single point ablation strategy. CLINICAL TRIAL REGISTRATION: Chinese Clinical Trials Registry Identifier: ChiCTR2200055340.


Assuntos
Complexos Ventriculares Prematuros , Humanos , Estudos Prospectivos , Projetos de Pesquisa , Complexos Ventriculares Prematuros/cirurgia
11.
Leuk Lymphoma ; 63(12): 2869-2878, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35849332

RESUMO

Previous studies have identified several ICAM3 transcript variants and mainly investigated the function of the longest transcript of ICAM3 in various tumor progressions. However, the role of the other ICAM3 transcript variants remains unclear. Herein, we detected the expression of ICAM3 transcript variants 1-4 in DLBCL cells and tumor tissues, disclosed that variants 1, 3, and 4 were expressed in normal B cell lines and 3 DLBCL cell lines except SU-DHL-2 as well as tumor tissues, while variant 2 was not detected. Moreover, we found that ectopic expression of variants 1-4 enhanced cell proliferation by accelerating the cell cycle in SU-DHL2 cells in vitro. In addition, variants 1-4 overexpression showed no effects on SU-DHL2 cell apoptosis. Interestingly, the expression of variants 1, 3, and 4 promoted cell migration and EMT process while variant 2 had no effects. Collectively, the above results displayed the different roles of ICAM3 transcript variants in mediating DLBCL progression.


Assuntos
Molécula 3 de Adesão Intercelular , Linfoma Difuso de Grandes Células B , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Molécula 3 de Adesão Intercelular/genética , Linfoma Difuso de Grandes Células B/patologia
12.
Cancer Sci ; 113(9): 3018-3031, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35635239

RESUMO

Previous studies have reported that TIFA plays different roles in various tumor types. However, the function of TIFA in colorectal cancer (CRC) remains unclear. Here, we showed that the expression of TIFA was markedly increased in CRC versus normal tissue, and positively correlated with CRC TNM stages. In agreement, we found that the CRC cell lines show increased TIFA expression levels versus normal control. The knockdown of TIFA inhibited cell proliferation but had no effect on cell apoptosis in vitro or in vivo. Moreover, the ectopic expression of TIFA enhanced cell proliferation ability in vitro and in vivo. In contrast, the expression of mutant TIFA (T9A, oligomerization site mutation; D6, TRAF6 binding site deletion) abolished TIFA-mediated cell proliferation enhancement. Exploration of the underlying mechanism revealed that the protein synthesis-associated kinase RSK and PRAS40 activation were responsible for TIFA-mediated CRC progression. In summary, these findings suggest that TIFA plays a role in mediating CRC progression. This could provide a promising target for CRC therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Proteínas Quinases/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
13.
Eur J Pharmacol ; 919: 174801, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123978

RESUMO

Up to now, there are few therapeutic approaches available to protect heart from ischemia/reperfusion (I/R) injury. The present work was designed to examine the protection of XMU-MP-1, an inhibitor of mammalian sterile 20-like kinase 1 (Mst1), against myocardial I/R injury in mice and investigate the underlying molecular mechanisms. The wild-type and Mst1 (-/-) mice were exposed to I/R injury and treated with XMU-MP-1 immediately after reperfusion. Treatment with XMU-MP-1 reduced infarct size, attenuated apoptosis and necrosis, and preserved cardiac function of I/R mice. XMU-MP-1 mitigated mitochondrial dysfunction in myocardium of I/R mice. In addition, XMU-MP-1 stimulated M2 macrophage polarization and suppressed inflammation in myocardium of I/R mice. Mst1 deficiency had similar benefits on myocardial I/R injury and XMU-MP-1 treatment did not provide further protection against I/R injury in Mst1 (-/-) mice. Both treatment with XMU-MP-1 and Mst1 deficiency promoted the activation of AMPKα in myocardium of I/R mice. More importantly, administration of Compound C (a specific AMPK signaling blocker) blunted the protective effects of XMU-MP-1 on myocardial I/R injury. Collectively, reperfusion therapy with XMU-MP-1 mitigated myocardial I/R injury and preserved myocardial function in mice through modulating Mst1/AMPK pathway.


Assuntos
Cardiotônicos/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/química , Cardiotônicos/uso terapêutico , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/uso terapêutico
14.
J Cancer ; 13(1): 212-224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976184

RESUMO

Breast cancer has become the most newly-diagnosed cancer and the 5th leading cause of cancer death worldwide. The 5-year survival rate of breast cancer is about 90%. However, the 5-year survival rate drops to <30% when metastasis to distant sites occurs. The blood vessel formation (i.e., angiogenesis) plays a crucial role during the metastatic process. In this study, we investigated the role of PFKFB4 in angiogenesis of breast cancer. Employing in vitro HUVEC tube formation or in vivo orthotopic mouse model, and gene editing or specific small inhibitors strategy, and utilizing qPCR, western blot, ELISA, or immunofluorescent/immunohistochemistry staining methods, we found the following: 1) PFKFB4 upregulates IL-6 expression via NF-κB signaling in breast cancer cells; 2) PFKFB4-induced lactate secretion contributes to NF-κB activation in breast cancer cells; 3) IL-6 elicits angiogenesis via STAT5A/P-STAT5 in HUVEC; 4) 5-MPN (a specific PFKFB4 inhibitor) suppresses angiogenesis in vitro and in vivo. Our findings suggest a potential strategy whereby 5-MPN may lead to an improved therapeutic outcome for breast cancer patients.

15.
Front Mol Biosci ; 8: 695420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291087

RESUMO

It was proven that PGK1 plays a vital role in the proliferation, migration, and invasion of human breast cancer. However, the correlation of PGK1 mRNA and protein expression with clinicopathologic characteristics and prognostic values according to various kinds of breast cancer patient classifications remains unsufficient. Here, we analyzed data from the Oncomine database, Breast cancer Gene-Expression Miner v4.5, TNMplot, MuTarget, PrognoScan database, and clinical bioinformatics to investigate PGK1 expression distribution and prognostic value in breast cancer patients. Our study revealed that the mRNA and protein expression levels of PGK1 were up-regulated in various clinicopathologic types of breast cancer. Moreover, the expression of PGK1 was correlated with mutations of common tumor suppressor genes TP53 and CDH1. In addition, we found that high mRNA level of PGK1 was significantly associated with poor OS, RFS, and DMFS. Notably, Cox regression analysis showed that PGK1 could be used as an independent prognostic marker. In summary, the aforementioned findings suggested that PGK1 might be not only explored as a potential biomarker, but also combined with TP53/CDH1 for chemotherapy in breast cancer.

17.
Theranostics ; 11(5): 2297-2317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500726

RESUMO

Rationale: Considerable evidence suggests that breast cancer metastasis and recurrence occur due to emergence of cancer stem cells (CSCs). In our previous study, we designed a high-throughput siRNA screening platform that identifies inflammation genes involved in the regulation of cancer cell stemness. We reported that CCL16 protein decreases OCT4 expression and reduces the ALDH+ subpopulation. However, the mechanism by which CCL16 maintains stem cell-like properties remains unclear. Methods: Tissue microarrays were used to evaluate CCL16 expression. Cancer stemness assays were performed in CCL16 knockdown and overexpressing cells in vitro and in a xenograft model in vivo. Human phosphokinase array, immunofluorescence and chromatin immunoprecipitation assays were performed to explore the underlying mechanism. Results: We report that CCL16 was overexpressed in breast tumors and significantly correlated with clinical progression. We found that silencing CCL16 in MDA-MB-231 and BT549 cells diminished CSC properties including ALDH+ subpopulation, side population, chemo-resistance, and sphere formation. Furthermore, mice bearing CCL16-silenced MDA-MB-231 xenografts had lower tumorigenic frequency and developed smaller tumors. Exploration of the underlying mechanism found that CCL16 selects CCR2 to activate p-AKT/GSK3ß signaling and facilitate ß-catenin nuclear translocation. Further, CCL16 binds to the OCT4 promoter and promotes OCT4 expression. In addition, shRNAs targeting CCR2 and XAV939 targeting ß-catenin abolished CCL16-mediated cancer stemness. Upstream, IL10 mediates STAT3 activation, which binds to the CCL16 promoter and enhances its expression. The STAT3-targeted inhibitor Stattic suppressed CCL16 expression in vitro and restrained tumor progression in vivo. Conclusions: We identified a potential CSC regulator and suggest a novel mechanism for how CCL16 governs cancer cell stemness. We propose that CCL16 could be an effective target for breast cancer therapy.


Assuntos
Neoplasias da Mama/patologia , Quimiocinas CC/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Receptores CCR2/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Quimiocinas CC/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Receptores CCR2/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
18.
BMC Pediatr ; 21(1): 20, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468075

RESUMO

BACKGROUND: Positional head deformity (PHD) is defined as a change in the shape of an infant's skull due to an external force. In certain cases, it can lead to cosmetic deformities or even neurological issues due to its impact on the developing nervous system. Therefore, we conducted this study to investigate the incidence and characteristics of PHD in term infants in China and preliminarily establish a localized diagnostic reference standard. METHODS: Overall, 4456 term infants from three medical institutions in Chongqing were and divided and analyzed according to their age. Cranial vault asymmetry (CVA) and cephalic index (CI) were calculated in all infants. The current international diagnostic criteria were used to understand PHD incidence and analyze the CVA and CI distribution. RESULTS: According to the current international standards, the total detection rate of PHD in Chongqing's term infants was 81.5%, with brachycephaly alone being the most frequent (39.4%), followed by brachycephaly with plagiocephaly (34.8%) and plagiocephaly alone (6.2%). The detection rates of dolichocephaly were low: alone, 0.9% and combined with plagiocephaly, 0.2%. According to age, plagiocephaly (44.5%) and brachycephaly (82.0%) were the most frequent in the 2-3-month group. The 75th/90th/97th and 3rd/10th/25th/75th/90th/97th percentiles of CVA and CIs were 0.4/0.7/1.0 and 76.4/78.8/82.3/91.1/94.6/99.2%, respectively. CONCLUSIONS: According to the current international standards, the PHD detection rate among term infants in Chongqing was high. Therefore, a new diagnostic standard for Chinese infants was proposed where CVA ≥ 0.4 cm indicates plagiocephaly, CI ≥ 91% indicates brachycephaly, and CI ≤ 82% indicates dolichocephaly.


Assuntos
Craniossinostoses , Plagiocefalia , China/epidemiologia , Humanos , Incidência , Lactente , Crânio/diagnóstico por imagem
19.
Heart Vessels ; 36(7): 1016-1026, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33512599

RESUMO

Ripple mapping can make the visualization of activation conduction on a 3-dimensional voltage map and is useful tool for scar-related organized atrial tachycardia (AT). This study sought to assess the efficacy of ripple mapping for interpreting reentrant circuits and critical isthmus in postoperative ATs. 34 consecutive patients with a history of mitral valve surgery (mean age, 54.5 ± 12.4 years) underwent high density (HD) RM during ATs with CARTO3v4 CONFIDENSE system. The voltage activation threshold was determined by RM over a bipolar voltage map. The identification of underlying mechanisms and ablation setting was based on RM without reviewing activation mapping. A total of 41 ATs (35 spontaneous, 6 induced) were characterized. 39 reentry circuits were successfully mapped (cycle length, 256 ± 43 ms). Of the 41 ATs, 28 were confirmed by ripple mapping alone (68%), and 12 (29%) by ripple mapping and entrainment mapping. Of 12 ATs in the left atrium, 9 (75%) needed entrainment to confirm, compared with 5 (17.8%) in the right atrium. Primary endpoint after initial ablation set was achieved in 32 of the 34 patients (94.1%). Freedom from atrial arrhythmias was 79.4% after the follow-up of 12 ± 5 months. Of the seven patients with recurrence, three underwent the repeated catheter ablation. Ripple mapping precisely delineated reentrant circuits in post-cardiac surgery AT resulting in a high success rate of ablation. Entrainment maneuvers remain useful for elucidation of complex AT circuits.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ablação por Cateter/métodos , Técnicas Eletrofisiológicas Cardíacas/métodos , Imageamento Tridimensional/métodos , Complicações Pós-Operatórias/cirurgia , Cirurgia Assistida por Computador/métodos , Taquicardia Atrial Ectópica/cirurgia , Eletrocardiografia Ambulatorial , Feminino , Seguimentos , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/fisiopatologia , Período Pós-Operatório , Estudos Prospectivos , Taquicardia Atrial Ectópica/diagnóstico , Taquicardia Atrial Ectópica/etiologia
20.
Cell Death Dis ; 11(11): 988, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203867

RESUMO

Ferropotsis is among the most important mechanisms of cancer suppression, which could be harnessed for cancer therapy. However, no natural small-molecule compounds with cancer inhibitory activity have been identified to date. In the present study, we reported the discovery of a novel ferroptosis inducer, talaroconvolutin A (TalaA), and the underlying molecular mechanism. We discovered that TalaA killed colorectal cancer cells in dose-dependent and time-dependent manners. Interestingly, TalaA did not induce apoptosis, but strongly triggered ferroptosis. Notably, TalaA was significantly more effective than erastin (a well-known ferroptosis inducer) in suppressing colorectal cancer cells via ferroptosis. We revealed a dual mechanism of TalaA' action against cancer. On the one hand, TalaA considerably increased reactive oxygen species levels to a certain threshold, the exceeding of which induced ferroptosis. On the other hand, this compound downregulated the expression of the channel protein solute carrier family 7 member 11 (SLC7A11) but upregulated arachidonate lipoxygenase 3 (ALOXE3), promoting ferroptosis. Furthermore, in vivo experiments in mice evidenced that TalaA effectively suppressed the growth of xenografted colorectal cancer cells without obvious liver and kidney toxicities. The findings of this study indicated that TalaA could be a new potential powerful drug candidate for colorectal cancer therapy due to its outstanding ability to kill colorectal cancer cells via ferroptosis induction.


Assuntos
Alcaloides/metabolismo , Neoplasias Colorretais/genética , Ferroptose/genética , Pirrolidinonas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA