RESUMO
Excess dietary intake of saturated fatty acids (SFAs) induces glucose intolerance and metabolic disorders. In contrast, unsaturated fatty acids (UFAs) elicit beneficial effects on insulin sensitivity. However, it remains elusive how SFAs and UFAs signal differentially toward insulin signaling to influence glucose homeostasis. Here, using a croaker model, we report that dietary palmitic acid (PA), but not oleic acid or linoleic acid, leads to dysregulation of mTORC1, which provokes systemic insulin resistance. Mechanistically, we show that PA profoundly elevates acetyl-CoA derived from mitochondrial fatty acid ß oxidation to intensify Tip60-mediated Rheb acetylation, which triggers mTORC1 activation by promoting the interaction between Rheb and FKBPs. Subsequently, hyperactivation of mTORC1 enhances IRS1 serine phosphorylation and inhibits TFEB-mediated IRS1 transcription, inducing impairment of insulin signaling. Collectively, our results reveal a conserved molecular insight into the mechanism by which Tip60-mediated Rheb acetylation induces mTORC1 activation and insulin resistance under the PA condition, which may provide therapeutic avenues to intervene in the development of T2D.
Assuntos
Resistência à Insulina , Lisina Acetiltransferase 5 , Alvo Mecanístico do Complexo 1 de Rapamicina , Ácido Palmítico , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Acetilação , Animais , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Lisina Acetiltransferase 5/metabolismo , Lisina Acetiltransferase 5/genética , Transdução de Sinais , Humanos , Fosforilação , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genéticaRESUMO
Sulphate-reducing microorganisms, or SRMs, are crucial to organic decomposition, the sulphur cycle, and the formation of pyrite. Despite their low energy-yielding metabolism and intense competition with other microorganisms, their ability to thrive in natural habitats often lacking sufficient substrates remains an enigma. This study delves into how Desulfovibrio desulfuricans G20, a representative SRM, utilizes photoelectrons from extracellular sphalerite (ZnS), a semiconducting mineral that often coexists with SRMs, for its metabolism and energy production. Batch experiments with sphalerite reveal that the initial rate and extent of sulphate reduction by G20 increased by 3.6 and 3.2 times respectively under light conditions compared to darkness, when lactate was not added. Analyses of microbial photoelectrochemical, transcriptomic, and metabolomic data suggest that in the absence of lactate, G20 extracts photoelectrons from extracellular sphalerite through cytochromes, nanowires, and electron shuttles. Genes encoding movement and biofilm formation are upregulated, suggesting that G20 might sense redox potential gradients and migrate towards sphalerite to acquire photoelectrons. This process enhances the intracellular electron transfer activity, sulphur metabolism, and ATP production of G20, which becomes dominant under conditions of carbon starvation and extends cell viability in such environments. This mechanism could be a vital strategy for SRMs to survive in energy-limited environments and contribute to sulphur cycling.
Assuntos
Desulfovibrio desulfuricans , Oxirredução , Sulfatos , Sulfetos , Sulfatos/metabolismo , Sulfetos/metabolismo , Desulfovibrio desulfuricans/metabolismo , Desulfovibrio desulfuricans/genética , Biofilmes/crescimento & desenvolvimento , Elétrons , Enxofre/metabolismo , Transporte de Elétrons , Compostos de ZincoRESUMO
Fatty acid-binding protein 1 (FABP1) plays an important role in regulating fatty acid metabolism in liver, which is a potential therapeutic target for diseases such as non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered FABP1 induction in hepatocytes as a primary mediator of lipogenesis when exposed to fatty acids, especially saturated fatty acids (SFAs). In the feeding trial, palm oil led to excess lipid accumulation in the liver of large yellow croaker (Larimichthys crocea), accompanied by significant induction of FABP1. In cultured cells, palmitic acid (PA), a kind of SFA, triggered the fabp1 expression and increased triglyceride (TG) contents. Knockdown of FABP1 dampened PA-induced TG accumulation through mitigated lipogenesis. The overexpression of FABP1 showed the opposite result. Furthermore, the inactivation of FABP1 led to induction in insulin-induced gene 1 (INSIG1) expression, which attenuated the processing of sterol regulatory element-binding protein 1 (SREBP1) by down-regulating the nuclear-localized SREBP1. These results revealed a previously unrecognized function of FABP1 in response to PA, providing additional evidence for targeting FABP1 in the treatment of NAFLD caused by SFA.
Assuntos
Proteínas de Ligação a Ácido Graxo , Hepatócitos , Lipogênese , Perciformes , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Hepatócitos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Perciformes/metabolismo , Perciformes/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Triglicerídeos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Palmítico/farmacologia , Células CultivadasRESUMO
Purpose: The purpose of this study was to compare the clinical efficacy of foldable capsular vitreous body (FCVB) filled with either light or heavy silicone oil and the incidence of complications after their implantation for the treatment of severe ocular trauma and silicone oil-dependent eyes. Methods: FCVB filled with either light (n = 16) or heavy (n = 8) silicone oil was implanted in 24 patients. During the 12-month follow-up period, the intraocular pressure, final best-corrected visual acuity, retinal reattachment condition, position of the FCVB, and complications were assessed. Results: All surgeries were performed without issue. There was no significant difference in preoperative and postoperative best-corrected visual acuity between the two groups. A significant improvement in the intraocular pressure was observed after surgery in both the light silicone oil (P = 0.029) and heavy silicone oil (P = 0.035) groups. None of the patients developed displacement or prolapse of the FCVB. The most common early and late postoperative complications were postoperative hemorrhage (33.3%) and corneal opacification (50%), respectively. Conclusions: FCVB filled with heavy silicone oil can be used as a supplemental therapy for patients who have lost the anterior segment of their eye, have lesions of the inferior retina, or cannot maintain the prone position for various reasons. Translational Relevance: Implantation of FCVB combined with heavy silicone oil compensates for the shortcomings of this with light silicone oil, providing patients with more personalized treatment.
Assuntos
Óleos de Silicone , Acuidade Visual , Corpo Vítreo , Humanos , Óleos de Silicone/uso terapêutico , Óleos de Silicone/efeitos adversos , Masculino , Feminino , Adulto , Corpo Vítreo/efeitos dos fármacos , Pessoa de Meia-Idade , Acuidade Visual/efeitos dos fármacos , Resultado do Tratamento , Adulto Jovem , Vitrectomia/efeitos adversos , Vitrectomia/métodos , Pressão Intraocular/efeitos dos fármacos , Pressão Intraocular/fisiologia , Descolamento Retiniano/cirurgia , Adolescente , Próteses e Implantes/efeitos adversos , Seguimentos , Complicações Pós-Operatórias/etiologia , Idoso , Tamponamento Interno/métodosRESUMO
Air pollution exposure is closely linked to population age and socioeconomic status. Population aging and imbalance in regional economy are thus anticipated to have important implications on ozone (O3)-related health impacts. Here we provide a driver analysis for O3 mortality burden due to respiratory disease in China over 2013-2050 driven by population aging and regional inequity. Unexpectedly, we find that population aging is estimated to result in dramatic rises in annual O3 mortality burden in China; by 56, 101-137, and 298-485 thousand over the periods 2013-2020, 2020-2030, and 2030-2050, respectively. This reflects the exponential rise in baseline mortality rates with increasing age. The aging-induced mortality burden rise in 2030-2050 is surprisingly large, as it is comparable to the net national mortality burden due to O3 exposure in 2030 (359-399 thousand yr-1). The health impacts of O3 pollution, shown as mortality burden per capita, are inequitably distributed, with more severe effects in less developed provinces than their developed counterparts by 23.1% and 21.5% in 2019 and 2030, respectively. However, the regional inequity in O3 mortality burden is expected to be mitigated in 2050. This temporal variation reflects evolving demographic dividend characterized by a larger proportion of younger individuals in developed regions. These findings are critical for targeted improvement of healthcare services to ensure the sustainability of social development.
RESUMO
Two-dimensional molybdenum disulfide (MoS2) has been proven to be a candidate in photodetectors, and MoS2/lead sulfide (PbS) quantum dots (QDs) heterostructure has been used to expand the optical response wavelength of MoS2. Time-resolved pump-probe transient absorption measurements are performed to clarify the carrier transfer dynamics in the MoS2/PbS heterostructure. By comparing the carrier dynamics in MoS2 and MoS2/PbS under different pump wavelengths, we found that the excited electrons in PbS QDs can transfer rapidly (<100 fs) to MoS2, inducing its optical response in the near-infrared region, although the pump light energy is lower than the bandgap of MoS2. Besides, interfacial excitons can be formed in the heterostructure, prolonging the lifetime of the excited carriers, which could be beneficial for the extraction of the carriers in devices.
RESUMO
BACKGROUND: This work aimed to investigate the potential role of abnormal lipid metabolism in the development of prostate cancer (PCa). METHODS: A retrospective study design was used. The clinical data of 520 patients who underwent rectal prostate biopsy in our hospital from January 2020 to June 2023 were analysed. The patients were enrolled and divided into the anterior PCa group including 112 patients and benign prostatic hyperplasia (BPH) group including 408 patients. Univariate and multivariate logistic regression analyses were performed for the two patient groups, and further comparisons were made according to the Gleason score and TNM staging. RESULTS: Low-density lipoprotein cholesterol (LDL-C) level may be an independent risk factor for PCa, and it was significantly associated with the risk of PCa (odds ratio (OR) = 1.363, p = 0.030). Patients with PCa were further divided into the low risk group and the high risk group according to the Gleason score. Univariate analysis (p = 0.047) and logistic regression analysis (OR = 2.249, p = 0.036) revealed that LDL-C was a significant factor influencing the Gleason score. Patients with PCa were categorised into four groups based on TNM staging. One-way analysis of variance (ANOVA) analysis (p = 0.015) and ordinal logistic regression analysis (OR = 2.414, p = 0.007) demonstrated that LDL-C was a significant factor influencing TNM staging. CONCLUSIONS: This study revealed the important role of LDL-C in the development of PCa, highlighting its influence as an independent risk factor. Thus, LDL-C may promote the proliferation and invasion of PCa cells.
Assuntos
LDL-Colesterol , Neoplasias da Próstata , Humanos , Masculino , Estudos Retrospectivos , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Idoso , LDL-Colesterol/sangue , Pessoa de Meia-Idade , Fatores de Risco , Gradação de Tumores , Estadiamento de NeoplasiasRESUMO
OBJECTIVE: Limited evidence exists regarding the efficacy of preoperative exercise in reducing short-term complications after minimally invasive surgery in patients with non-small cell lung cancer. This study aims to investigate the impact of preoperative exercise on short-term complications after minimally invasive lung resection. METHODS: In this prospective, open-label, randomized (1:1) controlled trial at Xiangya Hospital, China (September 2020 to February 2022), patients were randomly assigned to a preoperative exercise group with 16-day alternate supervised exercise or a control group. The primary outcome assessed was short-term postoperative complications, with a follow-up period of 30 days postsurgery. RESULTS: A total of 124 patients were recruited (preoperative exercise group n = 62; control n = 62). Finally, 101 patients (preoperative exercise group; n = 51 and control; n = 50) with a median age of 56 years (interquartile range, 50-62 years) completed the study. Compared with the control group, the preoperative exercise group showed fewer postoperative complications (preoperative exercise 3/51 vs control 10/50; odds ratio, 0.17; 95% CI, 0.04-0.86; P = .03) and shorter hospital stays (mean difference, -2; 95% CI, -3 to -1; P = .01). Preoperative exercise significantly improved depression, stress, functional capacity, and quality of life (all P < .05) before surgery. Furthermore, preoperative exercise demonstrated a significantly lower minimum blood pressure during surgery and lower increases in body temperature on day 2 after surgery, neutrophil-to-lymphocyte ratio, and neutrophil count after surgery (all P < .05). Exploratory research on lung tissue RNA sequencing (5 in each group) showed downregulation of the tumor necrosis factor signaling pathway in the preoperative exercise group compared with the control group. CONCLUSIONS: Preoperative exercise training decreased short-term postoperative complications in patients with non-small cell lung cancer.
RESUMO
Pollution in the environment is today the biggest issue facing the globe and the main factor in the development of many fatal diseases. The main objective of the study to investigate green investments, economic growth and financial development on environmental pollution in the G-7 countries. This study used annual penal data from 1997 to 2021. The panel NARDL (Non-linear autoregressive distributed lag) results affirm that the positive change of green investment and negative shock in green investment have a significant and positive association with environment pollution in G-7 nations. Our findings provide more evidence for the long-term asymmetry between financial development and environmental performance. However, the findings confirm that a positive modification in financial development has a positive and significant effect on environment pollution. Whereas negative shock in financial development is negative and insignificant relationship with environment pollution. Moreover, the outcomes of the study reveal that both positive shock in gross domestic product growth and negative shock of economic growth have a significant and positive link with environment pollution in G-7 countries. According to the findings, by lowering carbon dioxide emissions, green investments reduced environmental pollution in the G-7 nations over the long and short term. Moreover, it is an innovative research effort that provides light on the connection between green investments, financial development, and the environment while making mention to the EKC in G-7 countries. After all these, our recommendation is to increases green investment expenditures to reduce environmental pollution in the G-7 nations based on our findings. Additionally, one important way for the nation to achieve its sustainable development goals is to improve advancements in the financial sector.
Assuntos
Poluição Ambiental , Desenvolvimento Sustentável , Poluição Ambiental/análise , Investimentos em Saúde , Dióxido de Carbono/análise , Desenvolvimento EconômicoRESUMO
BACKGROUND: Sterol regulatory element binding protein (SREBP) 1 is considered to be a crucial regulator for lipid synthesis in vertebrates. However, whether SREBP1 could regulate hepatic gluconeogenesis under high-fat diet (HFD) condition is still unknown, and the underlying mechanism is also unclear. OBJECTIVES: This study aimed to determine gluconeogenesis-related gene and protein expressions in response to HFD in large yellow croaker and explore the role and mechanism of SREBP1 in regulating the related transcription and signaling. METHODS: Croakers (mean weight, 15.61 ± 0.10 g) were fed with diets containing 12% crude lipid [control diet (ND)] or 18% crude lipid (HFD) for 10 weeks. The glucose tolerance, insulin tolerance, hepatic gluconeogenesis-related genes, and proteins expressions were determined. To explore the role of SREBP1 in HFD-induced gluconeogenesis, SREBP1 was inhibited by pharmacologic inhibitor (fatostatin) or genetic knockdown in croaker hepatocytes under palmitic acid (PA) condition. To explore the underlying mechanism, luciferase reporter and chromatin immunoprecipitation assays were conducted in HEK293T cells. Data were analyzed using analysis of variance or Student t test. RESULTS: Compared with ND, HFD increased the mRNA expressions of gluconeogenesis genes (2.40-fold to 2.60-fold) (P < 0.05) and reduced protein kinase B (AKT) phosphorylation levels (0.28-fold to 0.34-fold) (P < 0.05) in croakers. However, inhibition of SREBP1 by fatostatin addition or SREBP1 knockdown reduced the mRNA expressions of gluconeogenesis genes (P < 0.05) and increased AKT phosphorylation levels (P < 0.05) in hepatocytes, compared with that by PA treatment. Moreover, fatostatin addition or SREBP1 knockdown also increased the mRNA expressions of irs1 (P < 0.05) and reduced serine phosphorylation of IRS1 (P < 0.05). Furthermore, SREBP1 inhibited IRS1 transcriptions by binding to its promoter and induced IRS1 serine phosphorylation by activating diacylglycerol-protein kinase Cε signaling. CONCLUSIONS: This study reveals the role of SREBP1 in hepatic gluconeogenesis under HFD condition in croakers, which may provide a potential strategy for improving HFD-induced glucose intolerance.
Assuntos
Dieta Hiperlipídica , Gluconeogênese , Intolerância à Glucose , Fígado , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Gluconeogênese/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Humanos , Intolerância à Glucose/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Células HEK293 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Transdução de SinaisRESUMO
The mood index [Formula: see text] was used to describe evaluator attitudes regarding the progress of a project that formed the basis of a construction period prediction model. The degrees of pessimism [Formula: see text] and optimism [Formula: see text] were introduced, and an analysis model was established using [Formula: see text] and [Formula: see text] to predict the construction period and completion probability Firstly, the absolute construction period of each process of tunnel No. 2 can be obtained according to the measured daily average footage of each process of tunnel No. 1. Secondly, the probability of the stoppage caused by different factors can be obtained after the statistical analysis of the factors responsible for the stoppage of tunnel No. 1. Finally, the expected construction period and completion probability of tunnel No. 2 under different pessimism and optimism conditions are obtained by using the progress risk analysis theory of emotional models and the program evaluation and review technique method. An engineering application showed that the expected construction period increased, and the completion probability decreased considerably with increasing pessimism; the opposite trend occurred as optimism increased. During the process of risk management and control, the prediction model can be used to perform precise quantitative analysis of the expected construction period and completion probability, reduce the blindness of construction management, control decisions of complex giant tunnel projects, and provide a more accurate basis for decision makers to judge risks. The findings of this study can be applied to hydraulic tunnels and can provide a reference for traffic tunnels, railway tunnels, and other similar projects.
Assuntos
Ingestão de Líquidos , Envio de Mensagens de Texto , Probabilidade , Medição de Risco/métodos , AfetoRESUMO
An efficient and practical method for the synthesis of C5-brominated 8-aminoquinoline amides via a copper-promoted selective bromination of 8-aminoquinoline amides with alkyl bromides was developed. The reaction proceeds smoothly in dimethyl sulfoxide (DMSO) under air, employing activated and unactivated alkyl bromides as the halogenation reagents without additional external oxidants. This method features outstanding site selectivity, broad substrate scope, and excellent yields.
RESUMO
The comorbidity of chronic pain and mental dysfunctions such as anxiety disorders has long been recognized, but the underlying mechanisms remained poorly understood. Here, using a mouse model of neuropathic pain, we demonstrated that the thalamic paraventricular nucleus (PVT) played a critical role in chronic pain-induced anxiety-like behavioral abnormalities. Fiber photometry and electrophysiology demonstrated that chronic pain increased the activities in PVT glutamatergic neurons. Chemogenetic manipulation revealed that suppression of PVT glutamatergic neurons relieved pain-like behavior and anxiety-like behaviors. Conversely, selective activation of PVT glutamatergic neurons showed algesic and anxiogenic effects. Furthermore, the elevated excitability of PVT glutamatergic neurons resulted in increased excitatory inputs to the basolateral complex (BLA) neurons. Optogenetic manipulation of the PVT-BLA pathway bilaterally modulates both the pain-like behavior and anxiety-like phenotypes. These findings shed light on how the PVT-BLA pathway contributed to the processing of pain-like behavior and maladaptive anxiety, and targeting this pathway might be a straightforward therapeutic strategy to both alleviate nociceptive hypersensitivity and rescue anxiety behaviors in chronic pain conditions.
Assuntos
Complexo Nuclear Basolateral da Amígdala , Dor Crônica , Neuralgia , Humanos , Ansiedade , Tálamo , Transtornos de Ansiedade , Doença CrônicaRESUMO
Photoinduced excited-state carriers can affect both the absorption coefficient and refractive index of materials and influence the performance of photoelectric devices. Femtosecond time-resolved pump-probe transient absorption (TA) spectroscopy is usually used to detect carrier dynamics and excited-state absorption coefficients; however, measurements of transient refractive-index change are still difficult. We propose a method for determining the excited-state refractive-index change using TA microscopy. In TA measurements, a Fabry-Pérot cavity formed by the front and back surfaces of the sample could lead to interference of the probe light. As the wavelength of standing waves in the Fabry-Pérot cavity is closely related to the refractive index, the carrier-induced excited-state refractive-index change was obtained by comparing the transmission probe spectra between the ground and excited states. The proposed method was used to study the dynamics of excited-state refractive-index change in a perovskite film.
RESUMO
tRNA fragments (tRFs) are a recently identified class of small noncoding RNAs. To date, the regulation of tRF abundance and its functional mechanisms have been largely unclear in plants. We investigated how the Arabidopsis thaliana receptor kinase FERONIA (FER) regulates the abundance of tRFs to inhibit global mRNA translation. We demonstrate that FER regulates tRF abundance by directly phosphorylating the tRNA-binding protein YUELAO (YL) to modulate its function. Downregulation of FER and YL prevented the modification of tRNA via cytosine-5-methylation and 2'-O-methylation, thereby increasing tRF abundance. Furthermore, we show that YL acts as an important genetic downstream target of FER signaling, and knockdown of a specific tRF partially rescues the root hair growth defects of fer and yl mutants. Our findings shed light on the abundance and regulatory mechanisms of tRF and their role in inhibiting translation in plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pequeno RNA não Traduzido , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Transdução de SinaisRESUMO
The Cryogenian Sturtian and Marinoan Snowball Earth glaciations bracket a nonglacial interval during which Demosponge and green-algal biomarkers first appear. To understand the relationships between environmental perturbations and early animal evolution, we measured sulfur and mercury isotopes from the Datangpo Formation from South China. Hg enrichment with positive Δ199Hg excursion suggests enhanced volcanism, potentially due to depressurization of terrestrial magma chambers during deglaciation. A thick stratigraphic interval of negative Δ33Spy indicates that the nonglacial interlude was characterized by low but rising sulfate levels. Model results reveal a mechanism to produce the Δ33S anomalies down to -0.284 through Rayleigh distillation. We propose that extreme temperatures and anoxia contributed to the apparent delay in green algal production in the aftermath of the Sturtian glaciation and the subsequent reoxygenation of the iron-rich and sulfate-depleted ocean paved the way for evolution of animals.
RESUMO
Botrytis cinerea is a devastating fungal pathogen that causes severe economic losses in global tomato cultivation. Understanding the molecular mechanisms driving tomatoes' response to this pathogen is crucial for developing effective strategies to counter it. Although the Micro-Tom (MT) cultivar has been used as a model, its stage-specific response to B. cinerea remains poorly understood. In this study, we examined the response of the MT and Ailsa Craig (AC) cultivars to B. cinerea at different time points (12-48 h post-infection (hpi)). Our results indicated that MT exhibited a stronger resistant phenotype at 18-24 hpi but became more susceptible to B. cinerea later (26-48 hpi) compared to AC. Transcriptome analysis revealed differential gene expression between MT at 24 hpi and AC at 22 hpi, with MT showing a greater number of differentially expressed genes (DEGs). Pathway and functional annotation analysis revealed significant differential gene expression in processes related to metabolism, biological regulation, detoxification, photosynthesis, and carbon metabolism, as well as some immune system-related genes. MT demonstrated an increased reliance on Ca2+ pathway-related proteins, such as CNGCs, CDPKs, and CaMCMLs, to resist B. cinerea invasion. B. cinerea infection induced the activation of PTI, ETI, and SA signaling pathways, involving the modulation of various genes such as FLS2, BAK1, CERK1, RPM, SGT1, and EDS1. Furthermore, transcription factors such as WRKY, MYB, NAC, and AUX/IAA families played crucial regulatory roles in tomatoes' defense against B. cinerea. These findings provide valuable insights into the molecular mechanisms underlying tomatoes' defense against B. cinerea and offer potential strategies to enhance plant resistance.
RESUMO
Glycerol monolaurate (GML) is a potential candidate for regulating metabolic syndrome and inflammatory response. However, the role of GML in modulating intestinal health in fish has not been well determined. In this study, a 70-d feeding trial was conducted to evaluate the effect of GML on intestinal barrier, antioxidant capacity, inflammatory response and microbiota community of large yellow croaker (13.05 ± 0.09 g) fed with high level soybean oil (SO) diets. Two basic diets with fish oil (FO) or SO were formulated. Based on the SO group diet, three different levels of GML 0.02% (SO0.02), 0.04% (SO0.04) and 0.08% (SO0.08) were supplemented respectively. Results showed that intestinal villus height and perimeter ratio were increased in SO0.04 treatment compared with the SO group. The mRNA expressions of intestinal physical barrier-related gene odc and claudin-11 were significantly up-regulated in different addition of GML treatments compared with the SO group. Fish fed SO diet with 0.04% GML addition showed higher activities of acid phosphatase and lysozyme compared with the SO group. The content of malonaldehyde was significantly decreased and activities of catalase and superoxide dismutase were significantly increased in 0.02% and 0.04% GML groups compared with those in the SO group. The mRNA transcriptional levels of inflammatory response-related genes (il-1ß, il-6, tnf-α and cox-2) in 0.04% GML treatment were notably lower than those in the SO group. Meanwhile, sequencing analysis of bacterial 16S rRNA V4-V5 region showed that GML addition changed gut microbiota structure and increased alpha diversity of large yellow croaker fed diets with a high level of SO. The correlation analysis results indicated that the change of intestinal microbiota relative abundance strongly correlated with intestinal health indexes. In conclusion, these results demonstrated that 0.02%-0.04% GML addition could improve intestinal morphology, physical barrier, antioxidant capacity, inflammatory response and microbiota dysbiosis of large yellow croaker fed diets with a high percentage of SO.
Assuntos
Microbiota , Perciformes , Animais , Antioxidantes/metabolismo , Óleo de Soja/metabolismo , Disbiose , RNA Ribossômico 16S , Dieta/veterinária , Perciformes/genética , RNA Mensageiro/metabolismo , Ração Animal/análiseRESUMO
Accumulating evidence indicates that early and essential events for receptor-like kinase (RLK) function involve both autophosphorylation and substrate phosphorylation. However, the structural and biochemical basis for these events is largely unclear. Here, we used RLK FERONIA (FER) as a model and crystallized its core kinase domain (FER-KD) and two FER-KD mutants (K565R, S525A) in complexes with ATP/ADP and Mg2+ in the unphosphorylated state. Unphosphorylated FER-KD was found to adopt an unexpected active conformation in its crystal structure. Moreover, unphosphorylated FER-KD mutants with reduced (S525A) or no catalytic activity (K565R) also adopt similar active conformations. Biochemical studies revealed that FER-KD is a dual-specificity kinase, and its autophosphorylation is accomplished via an intermolecular mechanism. Further investigations confirmed that initiating substrate phosphorylation requires autophosphorylation of the activation segment on T696, S701, and Y704. This study reveals the structural and biochemical basis for the activation and regulatory mechanism of FER, providing a paradigm for the early steps in RLK signaling initiation.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais/fisiologia , FosforilaçãoRESUMO
Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.