Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4863, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849349

RESUMO

Supertoroidal light pulses, as space-time nonseparable electromagnetic waves, exhibit unique topological properties including skyrmionic configurations, fractal-like singularities, and energy backflow in free space, which however do not survive upon propagation. Here, we introduce the non-diffracting supertoroidal pulses (NDSTPs) with propagation-robust skyrmionic and vortex field configurations that persists over arbitrary propagation distances. Intriguingly, the field structure of NDSTPs has a similarity with the von Kármán vortex street, a pattern of swirling vortices in fluid and gas dynamics with staggered singularities that can stably propagate forward. NDSTPs will be of interest as directed channels for information and energy transfer applications.

2.
Int J Biol Macromol ; 260(Pt 1): 129530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296666

RESUMO

This study developed new biphasic gel systems containing a walnut oil-based oleogel and a chitosan hydrogel and evaluated the application on food spread. The effects of different oleogelators [γ-oryzanol/ß-sitosterol (γ-ORY/ß-SIT), candelilla wax/span 65 (CW/SA), and mono- and diglycerides of fatty acids] were explored. Rheological analysis showed that γ-ORY/ß-SIT-based bigel had the strongest gel strength, but XRD confirmed that ß' crystal form (d = 3.72 Å, 4.12 Å) was predominantly in the CW/SA-based bigel, which was more appropriate for application as spread. The characteristics of CW/SA-based bigel with different oleogel fractions (40-80 wt%) were investigated. The microscopic images indicated that the hydrogels were dispersed as small droplets in the oleogels after oleogel fraction reaching 60 %. The highest crystallinity was achieved when the oleogel fraction was 60 %, and its oil binding capacity was 96.49 %. Textural analysis showed that the CW/SA-based bigel (OG-60 %) had similar properties with commercial spread B, and can be used as a partial replacement for spread B. Replacing 75 % of the commercial spread B with the bigel was found to be optimal and displayed acceptable sensory features. This study developed a healthy bigel based on walnut oil and provided the in-depth information for bigels as an alternative to plastic fats.


Assuntos
Quitosana , Juglans , Fenilpropionatos , Hidrogéis/química , Compostos Orgânicos/química
3.
Plant Foods Hum Nutr ; 79(1): 48-58, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37962805

RESUMO

Angiotensin I-converting enzyme (ACE)-inhibiting peptides were isolated from walnut protein isolate (WPI) using ultrasound-assisted extraction. This study aimed to assess the impact of ultrasonic pretreatment on the physicochemical properties of WPI. The optimal extraction conditions for WPI were determined as a 15-min ultrasonic treatment at 400 W. Subsequently, the hydrolysate exhibiting the highest in vitro ACE-inhibiting activity underwent further processing and separation steps, including ultrafiltration, ion exchange chromatography, liquid chromatography-tandem mass spectrometry, ADMET screening, and molecular docking. As a result of this comprehensive process, two previously unidentified ACE-inhibiting peptides, namely Tyr-Ile-Gln (YIQ) and Ile-Tyr-Gln (IYQ), were identified. In addition, a novel peptide, Ile-Lys-Gln (IKQ), was synthesized, demonstrating superior ACE-inhibiting activity and temperature stability. In silico analysis estimated an in vivo utilization rate of 21.7% for IKQ. These peptides were observed to inhibit ACE through an anti-competitive mechanism, with molecular docking simulations suggesting an interaction mechanism involving hydrogen bonding. Notably, both IYQ and IKQ peptides exhibited no discernible toxicity to HUVECs cells and promoted nitric oxide (NO) generation. These findings underscore the potential of ultrasonicated WPI in the separation of ACE-inhibiting peptides and their utility in the development of novel ACE inhibitors for functional food applications.


Assuntos
Juglans , Juglans/química , Juglans/metabolismo , Peptidil Dipeptidase A/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Hidrolisados de Proteína/química
4.
Opt Express ; 31(25): 42549-42561, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087626

RESUMO

Vortex beams that carry orbital angular moment (OAM) have recently attracted a great amount of research interest, and metasurfaces and planar microcavities have emerged as two prominent, but mostly separated, methods for Si chip-based vortex beam emission. In this work, we demonstrate in numerical simulation for the first time the hybridization of these two existing methods in a Si chip-based passive emitter (i.e., a light coupler). A unique feature of this device is its broken conjugate symmetry, which originates from introducing a metasurface phase gradient along a microring. The broken conjugate symmetry creates a new phenomenon that we refer to as asymmetric vortex beam emission. It allows two opposite input directions to generate two independent sets of OAM values, a capability that has never been reported before in Si chip-based passive emitters. In addition, we have also developed here a new analytical method to extract the OAM spectrum from a vector vortex beam. This analytical method will prove to be useful for vector vortex beam analysis, as mode purity analysis has rarely been reported in literature due to the complexity of the full-vector nature of such beams. This study provides new approaches for both the design and the analysis of integrated vortex beam emission, which could be utilized in many applications such as free-space optical communications and microfluidic particle manipulation.

5.
Nanoscale Horiz ; 8(10): 1345-1365, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37608742

RESUMO

The integration of two-dimensional (2D) van der Waals materials with nanostructures has triggered a wide spectrum of optical and optoelectronic applications. Photonic structures of conventional materials typically lack efficient reconfigurability or multifunctionality. Atomically thin 2D materials can thus generate new functionality and reconfigurability for a well-established library of photonic structures such as integrated waveguides, optical fibers, photonic crystals, and metasurfaces, to name a few. Meanwhile, the interaction between light and van der Waals materials can be drastically enhanced as well by leveraging micro-cavities or resonators with high optical confinement. The unique van der Waals surfaces of the 2D materials enable handiness in transfer and mixing with various prefabricated photonic templates with high degrees of freedom, functionalizing as the optical gain, modulation, sensing, or plasmonic media for diverse applications. Here, we review recent advances in synergizing 2D materials to nanophotonic structures for prototyping novel functionality or performance enhancements. Challenges in scalable 2D materials preparations and transfer, as well as emerging opportunities in integrating van der Waals building blocks beyond 2D materials are also discussed.

6.
Opt Lett ; 48(7): 1630-1633, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221727

RESUMO

Structured light was usually studied by two-dimensional (2D) transverse eigenmodes. Recently, the three-dimensional (3D) geometric modes as coherent superposed states of eigenmodes opened new topological indices to shape light, that optical vortices can be coupled on multiaxial geometric rays, but only limited to azimuthal vortex charge. Here, we propose a new structured light family, multiaxial super-geometric modes, enabling full radial and azimuthal indices coupled to multiaxial rays, and they can be directly generated from a laser cavity. Exploiting combined intra- and extra-cavity astigmatic mode conversions, we experimentally verify the versatile tunability of complex orbital angular momentum and SU(2) geometry beyond the limit of prior multiaxial geometric modes, opening new dimensions to revolutionize applications such as optical trapping, manufacturing, and communications.

7.
Environ Sci Pollut Res Int ; 30(19): 55044-55056, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36882657

RESUMO

The construction of heterojunctions between semiconductors is a preferred route to improve overall photocatalytic activity. In this work, a facile and feasible method was innovatively developed to one-step prepare g-C3N4/TiO2 heterojunctions via an absorption-calcination process using nitrogen and titanium precursors directly. This method can effectively avoid interfacial defects and establish a tight interfacial connection between g-C3N4 and TiO2. The resultant g-C3N4/TiO2 composites exhibited prominent photodegradation efficiency for tetracycline hydrochloride (TC-HCl) under visible light and simulated-sunlight irradiation. The optimal g-C3N4/TiO2 composite (urea content of 4 g) showed the highest photocatalytic efficiency, which can degrade 90.1% TC-HCl under simulated-sunlight irradiation within 30 min, achieving 3.9 and 2 times increases compared to pure g-C3N4 and TiO2, respectively. Besides, photodegradation pathways based on the role of active species ·O2- and ·OH were identified, indicating that a direct Z-scheme heterojunction was formed over the g-C3N4/TiO2 photocatalyst. The enhanced photocatalytic performance can be attributed to the close-knit interface contact and the formation of Z-scheme heterojunction between g-C3N4 and TiO2, which can accelerate the photo-induced charge carrier separation, broaden the spectra absorption range, and retain a higher redox potential. This one-step synthesis method may provide a new strategy for the construction of Z-scheme heterojunction photocatalysts consisting of g-C3N4 and TiO2 for environmental remediation and solar energy utilization.


Assuntos
Recuperação e Remediação Ambiental , Tetraciclina
8.
Food Chem X ; 18: 100645, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36968310

RESUMO

Hairtail (Trichiurus lepturus) is a kind of abundant marine fish, and its by-products contain rich protein resources, which can be better exploited and utilized in the food industry. In this study, the glycoprotein of hairtail by-products (GHB) was extracted using ultrasonic-assisted salt solution extraction with hairtail by-products as the raw material. The anti-fatigue effect of GHB was explored by mouse behavior experiments (shuttle box test, open field test and load swimming test). The results showed that the active escape times of the GHB group increased compared with the blank group in the shuttle box test, and the GHB group stayed in the central area for more time in the open field test. At the same time, the exhaustive swimming time of high-dose-group mice was 122.01% longer than that of the blank control group. GHB can improve the memory learning ability and activity of mice, and exert its anti-fatigue effect by eliminating excessive free radicals, slowing the metabolism of amino acids and proteins, and increasing glycogen reserves. This study provides a theoretical basis for the function mechanism of glycoprotein of hairtail by-products and the development of supplementary material in functional foods.

9.
Immunol Lett ; 255: 1-9, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739093

RESUMO

Ovarian cancer (OC) is the most lethal gynecological malignancy with a 5-year survival rate of 49.1% on average. In clinical practice, cytoreduction and chemotherapy remain the conventional treatment for advanced OC. However, the overall prognosis remains poor, which urges oncologists to develop new treatments. Chimeric antigen receptor (CAR)-T therapy as a branch of immunotherapy had gained a success in treating hematological malignancies. TM4SF1, a potential biomarker in many tumors, was validated highly expressed in ovarian cancer. Here we constructed a 3rd generation CAR-T agent targeting TM4SF1 to treat ovarian cancer. CAR-T cells showed a specific cytotoxicity against TM4SF1 positive tumor cell lines in vitro and repressed SKOV3-derived tumor growth in vivo. This is the first time reporting a CAR-T therapy targeting TM4SF1 in ovarian cancer. Our results suggested that TM4SF1 could be a very promising target in curing OC and showed the possibility of TM4SF1-based immunotherapy.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Feminino , Humanos , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia , Imunoterapia Adotiva/métodos , Imunoterapia , Linfócitos T , Linhagem Celular Tumoral , Antígenos de Superfície/metabolismo , Proteínas de Neoplasias/metabolismo
10.
Opt Express ; 30(16): 29781-29795, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299145

RESUMO

In light of pending capacity crunch in information era, orbital-angular-momenta-carrying vortex beams are gaining traction thanks to enlarged transmission capability. However, high-order beams are confronted with fundamental limits of nontrivial divergence or distortion, which consequently intensifies research on new optical states like low-order fractional vortex beams. Here, we experimentally demonstrate an alternative mean to increase the capacity by simultaneously utilizing multiple non-orthogonal states of structured light, challenging a prevailing view of using orthogonal states as information carriers. Specifically, six categories of beams are jointly recognized with accuracy of >99% by harnessing an adapted deep neural network, thus providing the targeted wide bandwidth. We then manifest the efficiency by sending/receiving a grayscale image in 256-ary mode encoding and shift keying schemes, respectively. Moreover, the well-trained model is able to realize high fidelity recognition (accuracy >0.8) onto structured beams under unknown turbulence and restricted receiver aperture size. To gain insights of the framework, we further interpret the network by revealing the contributions of intensity signals from different positions. This work holds potential in intelligence-assisted large-capacity and secure communications, meeting ever growing demand of daily information bandwidth.

11.
Light Sci Appl ; 11(1): 205, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790711

RESUMO

Structured light refers to the arbitrarily tailoring of optical fields in all their degrees of freedom (DoFs), from spatial to temporal. Although orbital angular momentum (OAM) is perhaps the most topical example, and celebrating 30 years since its connection to the spatial structure of light, control over other DoFs is slowly gaining traction, promising access to higher-dimensional forms of structured light. Nevertheless, harnessing these new DoFs in quantum and classical states remains challenging, with the toolkit still in its infancy. In this perspective, we discuss methods, challenges, and opportunities for the creation, detection, and control of multiple DoFs for higher-dimensional structured light. We present a roadmap for future development trends, from fundamental research to applications, concentrating on the potential for larger-capacity, higher-security information processing and communication, and beyond.

12.
Light Sci Appl ; 11(1): 144, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35585043

RESUMO

Spatial mode (de)multiplexing of orbital angular momentum (OAM) beams is a promising solution to address future bandwidth issues, but the rapidly increasing divergence with the mode order severely limits the practically addressable number of OAM modes. Here we present a set of multi-vortex geometric beams (MVGBs) as high-dimensional information carriers for free-space optical communication, by virtue of three independent degrees of freedom (DoFs) including central OAM, sub-beam OAM, and coherent-state phase. The novel modal basis set has high divergence degeneracy, and highly consistent propagation behaviors among all spatial modes, capable of increasing the addressable spatial channels by two orders of magnitude than OAM basis as predicted. We experimentally realize the tri-DoF MVGB mode (de)multiplexing and data transmission by the conjugated modulation method, demonstrating lower error rates caused by center offset and coherent background noise, compared with OAM basis. Our work provides a potentially useful basis for the next generation of large-scale dense data communication.

13.
Opt Lett ; 47(8): 2052-2055, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427334

RESUMO

Classically entangled light is used to refer to a class of structured beams with space-polarization, polarization-time, and space-time non-separable states akin to entangled states, which enable novel quantum-analog methods and applications in structured light. Here, we argue that classical entanglement is also available for pure scalar beams with multiple non-separable spatial degrees of freedom (DoFs). We theoretically and experimentally demonstrate a class of scalar ray-wave structured light with multiple controllable local DoFs to emulate multipartite entangled states, including the Greenberger-Horne-Zeilinger states. Our work unveils a rich parameter space for high-dimensional and multi-DoF control of structured light to extend applications in classical-quantum regimes.

14.
Synth Syst Biotechnol ; 7(2): 689-704, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35261927

RESUMO

The global market demand for natural astaxanthin is rapidly increasing owing to its safety, the potential health benefits, and the diverse applications in food and pharmaceutical industries. The major native producers of natural astaxanthin on industrial scale are the alga Haematococcus pluvialis and the yeast Xanthopyllomyces dendrorhous. However, the natural production via these native producers is facing challenges of limited yield and high cost of cultivation and extraction. Alternatively, astaxanthin production via metabolically engineered non-native microbial cell factories such as Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica is another promising strategy to overcome these limitations. In this review we summarize the recent scientific and biotechnological progresses on astaxanthin biosynthetic pathways, transcriptional regulations, the interrelation with lipid metabolism, engineering strategies as well as fermentation process control in major native and non-native astaxanthin producers. These progresses illuminate the prospects of producing astaxanthin by microbial cell factories on industrial scale.

15.
Nat Commun ; 12(1): 5891, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625539

RESUMO

Topological complex transient electromagnetic fields give access to nontrivial light-matter interactions and provide additional degrees of freedom for information transfer. An important example of such electromagnetic excitations are space-time non-separable single-cycle pulses of toroidal topology, the exact solutions of Maxwell's equations described by Hellwarth and Nouchi in 1996 and recently observed experimentally. Here we introduce an extended family of electromagnetic excitation, the supertoroidal electromagnetic pulses, in which the Hellwarth-Nouchi pulse is just the simplest member. The supertoroidal pulses exhibit skyrmionic structure of the electromagnetic fields, multiple singularities in the Poynting vector maps and fractal-like distributions of energy backflow. They are of interest for transient light-matter interactions, ultrafast optics, spectroscopy, and toroidal electrodynamics.

16.
Light Sci Appl ; 10(1): 220, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711803

RESUMO

Orbital angular momentum interactions at the nanoscale have remained elusive because the phase structure becomes unresolved. Now researchers have shown how to overcome this with tightly focused beams, demonstrating a record-high six-dimensional encoding in an ultra-dense nanoscale volume.

17.
J Org Chem ; 86(19): 13711-13719, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523934

RESUMO

Dioxygenation of alkenes was developed by the combination of electrochemical synthesis and aerobic oxidation, leading to easy accessibility of α-oxygenated ketones in an eco-friendly fashion. Using air as the oxygen source and the absence of transition metals were the critical features of this protocol. A wide range of alkenes and N-hydroxyimides were found to be compatible and provided α-oxygenated ketones in moderate to high yields.

18.
Opt Lett ; 46(15): 3737-3740, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329269

RESUMO

This Letter proposes a family of structured light, called bimeronic beams, that characterize topological structures of bimeron (the quasiparticle homeomorphic to skyrmion). The polarization Stokes vectors of bimeronic beams emulate bimeron structures, which are reconfigurable to form various topological textures by tuning mode parameters. The bimeronic beams unveil a mechanism to transform diverse topological states of light, similar to the skyrmionic transformations among Néel, Bloch, and anti-skyrmion types. Moreover, bimeronic transformations are more generalized to include skyrmionic transformations as special cases.

19.
Light Sci Appl ; 10(1): 50, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686054

RESUMO

Vector beams, non-separable in spatial mode and polarisation, have emerged as enabling tools in many diverse applications, from communication to imaging. This applicability has been achieved by sophisticated laser designs controlling the spin and orbital angular momentum, but so far is restricted to only two-dimensional states. Here we demonstrate the first vectorially structured light created and fully controlled in eight dimensions, a new state-of-the-art. We externally modulate our beam to control, for the first time, the complete set of classical Greenberger-Horne-Zeilinger (GHZ) states in paraxial structured light beams, in analogy with high-dimensional multi-partite quantum entangled states, and introduce a new tomography method to verify their fidelity. Our complete theoretical framework reveals a rich parameter space for further extending the dimensionality and degrees of freedom, opening new pathways for vectorially structured light in the classical and quantum regimes.

20.
Opt Express ; 29(1): 315-329, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33362116

RESUMO

Structured light with more controllable degrees-of-freedom (DoFs) is an exciting topic with versatile applications. In contrast to conventional vector vortex beams (VVBs) with two DoFs of orbital angular momentum (OAM) and polarization, a hybrid ray-wave structure was recently proposed [Optica 7(7), 820-831 (2020)], which simultaneously manifests multiple DoFs such as ray trajectory, coherent state phase, trajectory combination, besides OAM and polarization. Here we further generalize this exotic structure as the astigmatic hybrid VVB by hatching a new DoF of astigmatic degree. Importantly, the transverse topology varies with propagation, e.g. a linearly distributed hybrid trajectory pattern can topologically evolve to a circularly polygonal star shape, where the number of singularity changes from zero to multiple in a single beam. The propagation-dependent evolution can be easily controlled by the astigmatic degree, including as a vector vortex state such that different astigmatic trajectories have different polarizations. We experimentally generate such beams from a simple laser with a special astigmatic conversion by combined spherical and cylindrical lenses, and the results agree well with our theoretical simulation. With our new structured light, the propagation-multiplexing multi-DoF patterns can be controlled in a single beam, which can largely extend related applications such as high-dimensional large-capacity optical communication, laser machining, and particle trapping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA