Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 15, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263133

RESUMO

BACKGROUND: CDGSH iron-sulfur domain-containing protein 2 (CISD2), a pro-longevity gene, mediates healthspan in mammals. CISD2 is down-regulated during aging. Furthermore, a persistently high level of CISD2 promotes longevity and ameliorates an age-related skin phenotype in transgenic mice. Here we translate the genetic evidence into a pharmaceutical application using a potent CISD2 activator, hesperetin, which enhances CISD2 expression in HEK001 human keratinocytes from an older person. We also treated naturally aged mice in order to study the activator's anti-aging efficacy. METHODS: We studied the biological effects of hesperetin on aging skin using, firstly, a cell-based platform, namely a HEK001 human keratinocyte cell line established from an older person. Secondly, we used a mouse model, namely old mice at 21-month old. In the latter case, we investigate the anti-aging efficacy of hesperetin on ultraviolet B (UVB)-induced photoaging and naturally aged skin. Furthermore, to identify the underlying mechanisms and potential biological pathways involved in this process we carried out transcriptomic analysis. Finally, CISD2 knockdown HEK001 keratinocytes and Cisd2 knockout mice were used to study the Cisd2-dependent effects of hesperetin on skin aging. RESULTS: Four findings are pinpointed. Firstly, in human skin, CISD2 is mainly expressed in proliferating keratinocytes from the epidermal basal layer and, furthermore, CISD2 is down-regulated in the sun-exposed epidermis. Secondly, in HEK001 human keratinocytes from an older person, hesperetin enhances mitochondrial function and protects against reactive oxygen species-induced oxidative stress via increased CISD2 expression; this enhancement is CISD2-dependent. Additionally, hesperetin alleviates UVB-induced damage and suppresses matrix metalloproteinase-1 expression, the latter being a major indicator of UVB-induced damage in keratinocytes. Thirdly, transcriptomic analysis revealed that hesperetin modulates a panel of differentially expressed genes that are associated with mitochondrial function, redox homeostasis, keratinocyte function, and inflammation in order to attenuate senescence. Intriguingly, hesperetin activates two known longevity-associated regulators, namely FOXO3a and FOXM1, in order to suppress the senescence-associated secretory phenotype. Finally, in mouse skin, hesperetin enhances CISD2 expression to ameliorate UVB-induced photoaging and this occurs via a mechanism involving CISD2. Most strikingly, late-life treatment with hesperetin started at 21-month old and lasting for 5 months, is able to retard skin aging and rejuvenate naturally aged skin in mice. CONCLUSIONS: Our results reveal that a pharmacological elevation of CISD2 expression at a late-life stage using hesperetin treatment is a feasible approach to effectively mitigating both intrinsic and extrinsic skin aging and that hesperetin could act as a functional food or as a skincare product for fighting skin aging.


Assuntos
Hesperidina , Envelhecimento da Pele , Idoso , Animais , Humanos , Camundongos , Queratinócitos , Mamíferos , Camundongos Transgênicos
2.
Eur J Med Chem ; 258: 115583, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37393792

RESUMO

Down-regulation of Cisd2 in the liver has been implicated in the development of nonalcoholic fatty liver disease (NAFLD) and increasing the level of Cisd2 is therefore a potential therapeutic approach to this group of diseases. Herein, we describe the design, synthesis, and biological evaluation of a series of Cisd2 activators, all thiophene analogs, based on a hit obtained using two-stage screening and prepared via either the Gewald reaction or by intramolecular aldol-type condensation of an N,S-acetal. Metabolic stability studies of the resulting potent Cisd2 activators suggest that thiophenes 4q and 6 are suitable for in vivo studies. The results from studies on 4q-treated and 6-treated Cisd2hKO-het mice, which carry a heterozygous hepatocyte-specific Cisd2 knockout, confirm that (1) there is a correlation between Cisd2 levels and NAFLD and (2) these compounds have the ability to prevent, without detectable toxicity, the development and progression of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Regulação para Baixo , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Tiofenos/farmacologia , Tiofenos/uso terapêutico
3.
Cell Signal ; 109: 110755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315750

RESUMO

Chronic epithelial defects of the cornea, which are usually associated with severe dry eye disease, diabetes mellitus, chemical injuries or neurotrophic keratitis, as well as aging, are an unmet clinical need. CDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928). CISD2 protein is significantly decreased in the corneal epithelium of patients with various corneal epithelial diseases. Here we summarize the most updated publications and discuss the central role of CISD2 in corneal repair, as well as providing new results describing how targeting Ca2+-dependent pathways can improve corneal epithelial regeneration. This review mainly focuses on the following topics. Firstly, an overview of the cornea and of corneal epithelial wound healing. The key players involved in this process, such as Ca2+, various growth factors/cytokines, extracellular matrix remodeling, focal adhesions and proteinases, are briefly discussed. Secondly, it is well known that CISD2 plays an essential role in corneal epithelial regeneration via the maintenance of intracellular Ca2+ homeostasis. CISD2 deficiency dysregulates cytosolic Ca2+, impairs cell proliferation and migration, decreases mitochondrial function and increases oxidative stress. As a consequence, these abnormalities bring about poor epithelial wound healing and this, in turn, will lead to persistent corneal regeneration and limbal progenitor cell exhaustion. Thirdly, CISD2 deficiency induces three distinct Ca2+-dependent pathways, namely the calcineurin, CaMKII and PKCα signaling pathways. Intriguingly, inhibition of each of the Ca2+-dependent pathways seems to reverse cytosolic Ca2+ dysregulation and restore cell migration during corneal wound healing. Notably, cyclosporin, an inhibitor of calcineurin, appears to have a dual effect on both inflammatory and corneal epithelial cells. Finally, corneal transcriptomic analyses have revealed that there are six major functional groupings of differential expression genes when CISD2 deficiency is present: (1) inflammation and cell death; (2) cell proliferation, migration and differentiation; (3) cell adhesion, junction and interaction; (4) Ca2+ homeostasis; (5) wound healing and extracellular matrix; and (6) oxidative stress and aging. This review highlights the importance of CISD2 in corneal epithelial regeneration and identifies the potential of repurposing venerable FDA-approved drugs that target Ca2+-dependent pathways for new uses, namely treating chronic epithelial defects of the cornea.


Assuntos
Calcineurina , Epitélio Corneano , Humanos , Calcineurina/metabolismo , Córnea/metabolismo , Epitélio Corneano/metabolismo , Transdução de Sinais , Cicatrização
4.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430496

RESUMO

The aging human population with age-associated diseases has become a problem worldwide. By 2050, the global population of those who are aged 65 years and older will have tripled. In this context, delaying age-associated diseases and increasing the healthy lifespan of the aged population has become an important issue for geriatric medicine. CDGSH iron-sulfur domain 2 (CISD2), the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928), plays a pivotal role in mediating lifespan and healthspan by maintaining mitochondrial function, endoplasmic reticulum integrity, intracellular Ca2+ homeostasis, and redox status. Here, we summarize the most up-to-date publications on CISD2 and discuss the crucial role that this gene plays in aging and age-associated diseases. This review mainly focuses on the following topics: (1) CISD2 is one of the few pro-longevity genes identified in mammals. Genetic evidence from loss-of-function (knockout mice) and gain-of-function (transgenic mice) studies have demonstrated that CISD2 is essential to lifespan control. (2) CISD2 alleviates age-associated disorders. A higher level of CISD2 during natural aging, when achieved by transgenic overexpression, improves Alzheimer's disease, ameliorates non-alcoholic fatty liver disease and steatohepatitis, and maintains corneal epithelial homeostasis. (3) CISD2, the expression of which otherwise decreases during natural aging, can be pharmaceutically activated at a late-life stage of aged mice. As a proof-of-concept, we have provided evidence that hesperetin is a promising CISD2 activator that is able to enhance CISD2 expression, thus slowing down aging and promoting longevity. (4) The anti-aging effect of hesperetin is mainly dependent on CISD2 because transcriptomic analysis of the skeletal muscle reveals that most of the differentially expressed genes linked to hesperetin are regulated by hesperetin in a CISD2-dependent manner. Furthermore, three major metabolic pathways that are affected by hesperetin have been identified in skeletal muscle, namely lipid metabolism, protein homeostasis, and nitrogen and amino acid metabolism. This review highlights the urgent need for CISD2-based pharmaceutical development to be used as a potential therapeutic strategy for aging and age-associated diseases.


Assuntos
Senilidade Prematura , Rejuvenescimento , Humanos , Animais , Camundongos , Idoso , Longevidade/genética , Envelhecimento/genética , Mamíferos
5.
J Biomed Sci ; 29(1): 53, 2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35871686

RESUMO

BACKGROUND: The human CISD2 gene is located within a longevity region mapped on chromosome 4q. In mice, Cisd2 levels decrease during natural aging and genetic studies have shown that a high level of Cisd2 prolongs mouse lifespan and healthspan. Here, we evaluate the feasibility of using a Cisd2 activator as an effective way of delaying aging. METHODS: Hesperetin was identified as a promising Cisd2 activator by herb compound library screening. Hesperetin has no detectable toxicity based on in vitro and in vivo models. Naturally aged mice fed dietary hesperetin were used to investigate the effect of this Cisd2 activator on lifespan prolongation and the amelioration of age-related structural defects and functional decline. Tissue-specific Cisd2 knockout mice were used to study the Cisd2-dependent anti-aging effects of hesperetin. RNA sequencing was used to explore the biological effects of hesperetin on aging. RESULTS: Three discoveries are pinpointed. Firstly, hesperetin, a promising Cisd2 activator, when orally administered late in life, enhances Cisd2 expression and prolongs healthspan in old mice. Secondly, hesperetin functions mainly in a Cisd2-dependent manner to ameliorate age-related metabolic decline, body composition changes, glucose dysregulation, and organ senescence. Finally, a youthful transcriptome pattern is regained after hesperetin treatment during old age. CONCLUSIONS: Our findings indicate that a Cisd2 activator, hesperetin, represents a promising and broadly effective translational approach to slowing down aging and promoting longevity via the activation of Cisd2.


Assuntos
Longevidade , Proteínas do Tecido Nervoso , Envelhecimento/genética , Animais , Proteínas Relacionadas à Autofagia , Hesperidina , Humanos , Longevidade/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética
7.
EBioMedicine ; 73: 103654, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34740104

RESUMO

BACKGROUND: Age-related changes affecting the ocular surface cause vision loss in the elderly. Cisd2 deficiency drives premature aging in mice as well as resulting in various ocular surface abnormalities. Here we investigate the role of CISD2 in corneal health and disease. METHODS: We studied the molecular mechanism underlying the ocular phenotypes brought about by Cisd2 deficiency using both Cisd2 knockout (KO) mice and a human corneal epithelial cell (HCEC) cell line carrying a CRISPR-mediated CISD2KO background. We also develop a potential therapeutic strategy that targets the Ca2+ signaling pathway, which has been found to be dysregulated in the corneal epithelium of subjects with ocular surface disease in order to extend the mechanistic findings into a translational application. FINDINGS: Firstly, in patients with corneal epithelial disease, CISD2 is down-regulated in their corneal epithelial cells. Secondly, using mouse cornea, Cisd2 deficiency causes a cycle of chronic injury and persistent repair resulting in exhaustion of the limbal progenitor cells. Thirdly, in human corneal epithelial cells, CISD2 deficiency disrupts intracellular Ca2+ homeostasis, impairing mitochondrial function, thereby retarding corneal repair. Fourthly, cyclosporine A and EDTA facilitate corneal epithelial wound healing in Cisd2 knockout mice. Finally, cyclosporine A treatment restores corneal epithelial erosion in patients with dry eye disease, which affects the ocular surface. INTERPRETATION: These findings reveal that Cisd2 plays an essential role in the cornea and that Ca2+ signaling pathways are potential targets for developing therapeutics of corneal epithelial diseases. FUNDING: This study was supported by the Ministry of Science and Technology (MOST) and Chang Gung Medical Research Foundation, Taiwan.


Assuntos
Epitélio Corneano/fisiologia , Proteínas de Membrana/genética , Regeneração , Animais , Biomarcadores , Cálcio/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Ciclosporina/farmacologia , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Feminino , Perfilação da Expressão Gênica , Homeostase , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Imagem Molecular , Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/genética , Cicatrização/efeitos dos fármacos
8.
Aging Cell ; 20(12): e13523, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811857

RESUMO

The liver plays a pivotal role in mammalian aging. However, the mechanisms underlying liver aging remain unclear. Cisd2 is a pro-longevity gene in mice. Cisd2 mediates lifespan and healthspan via regulation of calcium homeostasis and mitochondrial functioning. Intriguingly, the protein level of Cisd2 is significantly decreased by about 50% in the livers of old male mice. This down-regulation of Cisd2 may result in the aging liver exhibiting non-alcoholic fatty liver disease (NAFLD) phenotype. Here, we use Cisd2 transgenic mice to investigate whether maintaining Cisd2 protein at a persistently high level is able to slow down liver aging. Our study identifies four major discoveries. Firstly, that Cisd2 expression attenuates age-related dysregulation of lipid metabolism and other pathological abnormalities. Secondly, revealed by RNA sequencing analysis, the livers of old male mice undergo extensive transcriptomic alterations, and these are associated with steatosis, hepatitis, fibrosis, and xenobiotic detoxification. Intriguingly, a youthful transcriptomic profile, like that of young 3-month-old mice, was found in old Cisd2 transgenic male mice at 26 months old. Thirdly, Cisd2 suppresses the age-associated dysregulation of various transcription regulators (Nrf2, IL-6, and Hnf4a), which keeps the transcriptional network in a normal pattern. Finally, a high level of Cisd2 protein protects the liver from oxidative stress, and this is associated with a reduction in mitochondrial DNA deletions. These findings demonstrate that Cisd2 is a promising target for the development of therapeutic agents that, by bringing about an effective enhancement of Cisd2 expression, will slow down liver aging.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Fígado/patologia , Doenças Metabólicas/genética , Proteínas do Tecido Nervoso/metabolismo , Envelhecimento , Animais , Masculino , Camundongos
9.
Biomedicines ; 9(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572415

RESUMO

Cisd2 (CDGSH iron sulfur domain 2) is a pro-longevity gene that extends the lifespan and health span of mice, ameliorates age-associated structural damage and limits functional decline in multiple tissues. Non-alcoholic fatty liver disease (NAFLD), which plays an important role in age-related liver disorders, is the most common liver disease worldwide. However, no medicines that can be used to specifically and effectively treat NAFLD are currently approved for this disease. Our aim was to provide pathological and molecular evidence to show that Cisd2 protects the liver from age-related dysregulation of lipid metabolism and protein homeostasis. This study makes four major discoveries. Firstly, a persistently high level of Cisd2 protects the liver from age-related fat accumulation. Secondly, proteomics analysis revealed that Cisd2 ameliorates age-related dysregulation of lipid metabolism, including lipid biosynthesis and ß-oxidation, in mitochondria and peroxisomes. Thirdly, Cisd2 attenuates aging-associated oxidative modifications of proteins. Finally, Cisd2 regulates intracellular protein homeostasis by maintaining the functionality of molecular chaperones and protein synthesis machinery. Our proteomics findings highlight Cisd2 as a novel molecular target for the development of therapies targeting fatty liver diseases, and these new therapies are likely to help prevent subsequent malignant progression to cirrhosis and hepatocellular carcinoma.

10.
Antioxidants (Basel) ; 10(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916843

RESUMO

Nonalcoholic fatty liver disease (NAFLD) and its more severe form, nonalcoholic steatohepatitis (NASH), are the most common chronic liver diseases worldwide. However, drugs to treat NAFLD and NASH are an unmet clinical need. This study sought to provide evidence that Cisd2 is a molecular target for the development of treatments targeting NAFLD and NASH. Several discoveries are pinpointed. The first is that Cisd2 dosage modulates the severity of Western diet-induced (WD-induced) NAFLD. Specifically, Cisd2 haploinsufficiency accelerates NAFLD development and exacerbates progression toward NASH. Conversely, an enhanced Cisd2 copy number attenuates liver pathogenesis. Secondly, when a WD is fed to mice, transcriptomic analysis reveals that the major alterations affecting biological processes are related to inflammation, lipid metabolism, and DNA replication/repair. Thirdly, among these differentially expressed genes, the most significant changes involve Nrf2-mediated oxidative stress, cholesterol biosynthesis, and fatty acid metabolism. Finally, increased Cisd2 expression protects the liver from oxidative stress and reduces the occurrence of mitochondrial DNA deletions. Taken together, our mouse model reveals that Cisd2 plays a crucial role in protecting the liver from WD-induced damages. The development of therapeutic agents that effectively enhance Cisd2 expression is one potential approach to the treatment of WD-induced fatty liver diseases.

11.
Nat Commun ; 12(1): 1322, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637724

RESUMO

The ubiquitin-proteasome system (UPS) and autophagy are two major quality control processes whose impairment is linked to a wide variety of diseases. The coordination between UPS and autophagy remains incompletely understood. Here, we show that ubiquitin ligase UBE3C and deubiquitinating enzyme TRABID reciprocally regulate K29/K48-branched ubiquitination of VPS34. We find that this ubiquitination enhances the binding of VPS34 to proteasomes for degradation, thereby suppressing autophagosome formation and maturation. Under ER and proteotoxic stresses, UBE3C recruitment to phagophores is compromised with a concomitant increase of its association with proteasomes. This switch attenuates the action of UBE3C on VPS34, thereby elevating autophagy activity to facilitate proteostasis, ER quality control and cell survival. Specifically in the liver, we show that TRABID-mediated VPS34 stabilization is critical for lipid metabolism and is downregulated during the pathogenesis of steatosis. This study identifies a ubiquitination type on VPS34 and elucidates its cellular fate and physiological functions in proteostasis and liver metabolism.


Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Fígado/metabolismo , Proteostase/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Autofagossomos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Dieta Hiperlipídica/efeitos adversos , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
12.
Autophagy ; 17(11): 3444-3460, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33465003

RESUMO

Genotoxic insult causes nuclear and mitochondrial DNA damages with macroautophagy/autophagy induction. The role of mitochondrial DNA (mtDNA) damage in the requirement of autophagy for nuclear DNA (nDNA) stability is unclear. Using site-specific DNA damage approaches, we show that specific nDNA damage alone does not require autophagy for repair unless in the presence of mtDNA damage. We provide evidence that after IR exposure-induced mtDNA and nDNA damages, autophagy suppression causes non-apoptotic mitochondrial permeability, by which mitochondrial ENDOG (endonuclease G) is released and translocated to nuclei to sustain nDNA damage in a TET (tet methylcytosine dioxygenase)-dependent manner. Furthermore, blocking lysosome function is sufficient to increase the amount of mtDNA leakage to the cytosol, accompanied by ENDOG-free mitochondrial puncta formation with concurrent ENDOG nuclear accumulation. We proposed that autophagy eliminates the mitochondria specified by mtDNA damage-driven mitochondrial permeability to prevent ENDOG-mediated genome instability. Finally, we showed that HBx, a hepatitis B viral protein capable of suppressing autophagy, also causes mitochondrial permeability-dependent ENDOG mis-localization in nuclei and is linked to hepatitis B virus (HBV)-mediated hepatocellular carcinoma development.Abbreviations: 3-MA: 3-methyladenine; 5-hmC: 5-hydroxymethylcytosine; ACTB: actin beta; ATG5: autophagy related 5; ATM: ATM serine/threonine kinase; DFFB/CAD: DNA fragmentation factor subunit beta; cmtDNA: cytosolic mitochondrial DNA; ConA: concanamycin A; CQ: chloroquine; CsA: cyclosporin A; Dox: doxycycline; DSB: double-strand break; ENDOG: endonuclease G; GFP: green fluorescent protein; Gy: gray; H2AX: H2A.X variant histone; HBV: hepatitis B virus; HBx: hepatitis B virus X protein; HCC: hepatocellular carcinoma; I-PpoI: intron-encoded endonuclease; IR: ionizing radiation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOMP: mitochondrial outer membrane permeability; mPTP: mitochondrial permeability transition pore; mtDNA: mitochondrial DNA; nDNA: nuclear DNA; 4-OHT: 4-hydroxytamoxifen; rDNA: ribosomal DNA; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; TET: tet methylcytosine dioxygenase; TFAM: transcription factor A, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage dependent anion channel.


Assuntos
Autofagia/genética , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Endodesoxirribonucleases/metabolismo , Instabilidade Genômica , Transporte Ativo do Núcleo Celular , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/antagonistas & inibidores , Dioxigenases/genética , Dioxigenases/metabolismo , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Neoplasias Hepáticas/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Permeabilidade
13.
Biochim Biophys Acta Mol Cell Res ; 1868(4): 118954, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33422617

RESUMO

CDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for the disease Wolfram syndrome 2 (WFS2; MIM 604928), which is an autosomal recessive disorder showing metabolic and neurodegenerative manifestations. CISD2 protein can be localized on the endoplasmic reticulum (ER), outer mitochondrial membrane (OMM) and mitochondria-associated membrane (MAM). CISD2 plays a crucial role in the regulation of cytosolic Ca2+ homeostasis, ER integrity and mitochondrial function. Here we summarize the most updated publications and discuss the central role of CISD2 in maintaining cellular homeostasis. This review mainly focuses on the following topics. Firstly, that CISD2 has been recognized as a prolongevity gene and the level of CISD2 is a key determinant of lifespan and healthspan. In mice, Cisd2 deficiency shortens lifespan and accelerates aging. Conversely, a persistently high level of Cisd2 promotes longevity. Intriguingly, exercise stimulates Cisd2 gene expression and thus, the beneficial effects offered by exercise may be partly related to Cisd2 activation. Secondly, that Cisd2 is down-regulated in a variety of tissues and organs during natural aging. Three potential mechanisms that may mediate the age-dependent decrease of Cisd2, via regulating at different levels of gene expression, are discussed. Thirdly, the relationship between CISD2 and cell survival, as well as the potential mechanisms underlying the cell death control, are discussed. Finally we discuss that, in cancers, CISD2 may functions as a double-edged sword, either suppressing or promoting cancer development. This review highlights the importance of the CISD2 in aging and age-related diseases and identifies the urgent need for the translation of available genetic evidence into pharmaceutic interventions in order to alleviate age-related disorders and extend a healthy lifespan in humans.


Assuntos
Envelhecimento/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Envelhecimento/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Retículo Endoplasmático/metabolismo , Homeostase , Humanos , Longevidade , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/genética
14.
PLoS Biol ; 17(10): e3000508, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31593566

RESUMO

CDGSH iron-sulfur domain-containing protein 2 (Cisd2) is pivotal to mitochondrial integrity and intracellular Ca2+ homeostasis. In the heart of Cisd2 knockout mice, Cisd2 deficiency causes intercalated disc defects and leads to degeneration of the mitochondria and sarcomeres, thereby impairing its electromechanical functioning. Furthermore, Cisd2 deficiency disrupts Ca2+ homeostasis via dysregulation of sarco/endoplasmic reticulum Ca2+-ATPase (Serca2a) activity, resulting in an increased level of basal cytosolic Ca2+ and mitochondrial Ca2+ overload in cardiomyocytes. Most strikingly, in Cisd2 transgenic mice, a persistently high level of Cisd2 is sufficient to delay cardiac aging and attenuate age-related structural defects and functional decline. In addition, it results in a younger cardiac transcriptome pattern during old age. Our findings indicate that Cisd2 plays an essential role in cardiac aging and in the heart's electromechanical functioning. They highlight Cisd2 as a novel drug target when developing therapies to delay cardiac aging and ameliorate age-related cardiac dysfunction.


Assuntos
Senilidade Prematura/genética , Envelhecimento/fisiologia , Bloqueio Atrioventricular/genética , Proteínas Relacionadas à Autofagia/genética , Coração/fisiopatologia , Proteínas do Tecido Nervoso/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Senilidade Prematura/metabolismo , Senilidade Prematura/fisiopatologia , Animais , Bloqueio Atrioventricular/diagnóstico por imagem , Bloqueio Atrioventricular/metabolismo , Bloqueio Atrioventricular/fisiopatologia , Proteínas Relacionadas à Autofagia/deficiência , Cálcio/metabolismo , Eletrocardiografia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Coração/fisiologia , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Proteínas do Tecido Nervoso/deficiência , Sarcômeros/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transcriptoma
15.
Mol Cell Oncol ; 5(3): e1441627, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250893

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is the major risk factor leading to hepatocellular carcinoma (HCC). Cisd2 haploinsufficiency in mice causes NAFLD by disrupting Ca2+ homeostasis, indicating that CISD2 is a molecular target for the treatment of NAFLD and the prevention of HCC.

16.
Aging Cell ; 17(1)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29168286

RESUMO

Skeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast-twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood. Strikingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius after middle age among mice. A proteomics approach was used to investigate the gastrocnemius of naturally aged mice, and this was compared to the autonomous effect of Cisd2 on gastrocnemius aging using muscle-specific Cisd2 knockout (mKO) mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and activation of UPR/ER stress stand out as the top two pathways. Additionally, the activity of Serca1 was significantly impaired and this impairment is mainly attributable to irreversibly oxidative modifications of Serca. Our results reveal that the overall characteristics of the gastrocnemius are very similar when naturally aged mice and the Cisd2 mKO mice are compared in terms of pathological alterations, ultrastructural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO mouse is a unique model for understanding the aging mechanism of skeletal muscle. Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for muscle aging.


Assuntos
Senilidade Prematura/metabolismo , Envelhecimento/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Doenças Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Atrofia Óptica/metabolismo , Proteômica , Animais , Proteínas de Transporte/metabolismo , Homeostase/fisiologia , Longevidade/genética , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteômica/métodos
17.
Cell Rep ; 21(8): 2198-2211, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166610

RESUMO

CISD2 is located within the chromosome 4q region frequently deleted in hepatocellular carcinoma (HCC). Mice with Cisd2 heterozygous deficiency develop a phenotype similar to the clinical manifestation of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Cisd2 haploinsufficiency causes a low incidence (20%) of spontaneous HCC and promotes HBV-associated and DEN-induced HCC; conversely, 2-fold overexpression of Cisd2 suppresses HCC in these models. Mechanistically, Cisd2 interacts with Serca2b and mediates its Ca2+ pump activity via modulation of Serca2b oxidative modification, which regulates ER Ca2+ uptake and maintains intracellular Ca2+ homeostasis in the hepatocyte. CISD2 haploinsufficiency disrupts calcium homeostasis, causing ER stress and subsequent NAFLD and NASH. Hemizygous deletion and decreased expression of CISD2 are detectable in a substantial fraction of human HCC specimens. These findings substantiate CISD2 as a haploinsufficient tumor suppressor and highlights Cisd2 as a drug target when developing therapies to treat NAFLD/NASH and prevent HCC.


Assuntos
Cálcio/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Haploinsuficiência/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Homeostase/fisiologia , Humanos , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
18.
World J Gastroenterol ; 22(1): 300-25, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26755878

RESUMO

The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Genes Supressores de Tumor , Vírus da Hepatite B/patogenicidade , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/virologia , Animais , Carcinoma Hepatocelular/ultraestrutura , Cocarcinogênese , Haploinsuficiência , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas Experimentais/ultraestrutura , Camundongos , Camundongos Transgênicos , Fatores de Risco , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA