Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(5): 656-663, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632374

RESUMO

Understanding the factors underpinning device switching times is crucial for the implementation of organic electrochemical transistors in neuromorphic computing, bioelectronics and real-time sensing applications. Existing models of device operation cannot explain the experimental observations that turn-off times are generally much faster than turn-on times in accumulation mode organic electrochemical transistors. Here, using operando optical microscopy, we image the local doping level of the transistor channel and show that turn-on occurs in two stages-propagation of a doping front, followed by uniform doping-while turn-off occurs in one stage. We attribute the faster turn-off to a combination of engineering as well as physical and chemical factors including channel geometry, differences in doping and dedoping kinetics and the phenomena of carrier-density-dependent mobility. We show that ion transport limits the operation speed in our devices. Our study provides insights into the kinetics of organic electrochemical transistors and guidelines for engineering faster organic electrochemical transistors.

2.
Adv Mater ; 35(21): e2212258, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840924

RESUMO

Challenges remain hindering the performance and stability of inverted perovskite solar cells (PSCs), particularly for the nonstable interface between lead halide perovskite and charge extraction metal oxide layer. Herein, a simple yet scalable interfacial strategy to facilitate the assemble of high-performance inverted PSCs and scale-up modules is reported. The hybrid interfacial layer containing self-assembly triphenylamine and conjugated poly(arylamine) simultaneously improves the chemical stability, charge extraction, and energy level alignment of hole-selective interface, meanwhile promoting perovskite crystallization. Consequently, the correspondent inverted PSCs and modules achieve remarkable power conversion efficiencies (PCEs) of 24.5% and 20.7% (aperture area of 19.4 cm2 ), respectively. The PSCs maintain over 80% of its initial efficiency under one-sun equivalent illumination of 1200 h. This strategy is also effective to perovskite with various bandgaps, demonstrating the highest PCE of 19.6% for the 1.76-eV bandgap PSCs. Overall, this work provides a simple yet scalable interfacial strategy for obtaining state-of-the-art inverted PSCs and modules.

3.
Nat Commun ; 13(1): 2598, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545620

RESUMO

Enhancing the luminescence property without sacrificing the charge collection is one key to high-performance organic solar cells (OSCs), while limited by the severe non-radiative charge recombination. Here, we demonstrate efficient OSCs with high luminescence via the design and synthesis of an asymmetric non-fullerene acceptor, BO-5Cl. Blending BO-5Cl with the PM6 donor leads to a record-high electroluminescence external quantum efficiency of 0.1%, which results in a low non-radiative voltage loss of 0.178 eV and a power conversion efficiency (PCE) over 15%. Importantly, incorporating BO-5Cl as the third component into a widely-studied donor:acceptor (D:A) blend, PM6:BO-4Cl, allows device displaying a high certified PCE of 18.2%. Our joint experimental and theoretical studies unveil that more diverse D:A interfacial conformations formed by asymmetric acceptor induce optimized blend interfacial energetics, which contributes to the improved device performance via balancing charge generation and recombination.

4.
Nat Commun ; 12(1): 3049, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031410

RESUMO

Photo-degradation of organic semiconductors remains as an obstacle preventing their durable practice in optoelectronics. Herein, we disclose that volume-conserving photoisomerization of a unique series of acceptor-donor-acceptor (A-D-A) non-fullerene acceptors (NFAs) acts as a surrogate towards their subsequent photochemical reaction. Among A-D-A NFAs with fused, semi-fused and non-fused backbones, fully non-fused PTIC, representing one of rare existing samples, exhibits not only excellent photochemical tolerance in aerobic condition, but also efficient performance in solar cells. Along with a series of in-depth investigations, we identify that the structural confinement to inhibit photoisomerization of these unique A-D-A NFAs from molecular level to macroscopic condensed solid helps enhancing the photochemical stabilities of molecules, as well as the corresponding OSCs. Although other reasons associating with the photostabilities of molecules and devices should not excluded, we believe this work provides helpful structure-property information toward new design of stable and efficient photovoltaic molecules and solar cells.

5.
Angew Chem Int Ed Engl ; 60(23): 12964-12970, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797187

RESUMO

Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non-fused electron acceptors, PTB4F and PTB4Cl, are developed via a two-step synthesis from single aromatic units. The introduction of a two-dimensional chain and halogenated terminals for these non-fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge-transfer rate in bulk heterojunction blends. As a result, PTB4Cl, upon blending with PBDB-TF polymer, has enabled single-junction OPVs with power conversion efficiencies of 12.76 %, representing the highest values among the reported fully unfused electron acceptors so far.

6.
Langmuir ; 21(20): 9007-9, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16171323

RESUMO

A surface roughening method by simple chemical etching was developed for the fabrication of superhydrophobic surfaces on three polycrystalline metals, namely aluminum, copper, and zinc. The key to the etching technique was the use of a dislocation etchant that preferentially dissolves the dislocation sites in the grains. The etched metallic surfaces, when hydrophobized with fluoroalkylsilane, exhibited superhydrophobic properties with water contact angles of larger than 150 degrees, as well as roll-off angles of less than 10 degrees for 8-microL drops. Also, the dislocation etching concept introduced here may be helpful in the fabrication of superhydrophobic surfaces on other polycrystalline substrates.

7.
J Colloid Interface Sci ; 240(2): 608-621, 2001 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-11482972

RESUMO

The calcium carbonate scale inhibition by two inhibitors, polyacrylic acid (PAA) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), has been studied in two heat transfer systems: recirculating cooling water and pool boiling systems. It is found that PBTCA has a better inhibition effect than PAA under identical conditions. The inhibition effect increases with increasing fluid velocity for the cooling water system, whereas in the presence of inhibitors, the fluid velocity has less effect on the scaling behavior. When the initial surface temperature increases, the inhibition efficiency decreases. In the presence of inhibitors, the scaling behavior is insensitive to the change of surface temperature. The relationship between the inhibition effect and the fractal dimension has also been investigated. The results show that the fractal dimension is higher in the presence of inhibitors. The better the inhibition effect, the higher the fractal dimension. XRD and FTIR analyses demonstrate that for the CaCO(3) formed in the pool boiling system, the content of vaterite increases with the increase of inhibition effects. The metastable crystal forms of vaterite and aragonite are stabilized kinetically in the presence of inhibitors. The step morphology has been observed by atomic force microscopy. It is shown that the step space on the CaCO(3) surface increases in the presence of inhibitors. Moreover, with the increase in inhibition effect, both the step space and the fractal dimension increase. Step bunching is also found and discussed in this paper. Copyright 2001 Academic Press.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA