RESUMO
BACKGROUND: Abnormal glycosylation is associated with tumors. The clinical value of serum glycans in assessing progression of hepatocellular carcinoma (HCC) patients remains a challenge. METHODS: A study dynamically comparing levels of fifteen lectin-specific glycans between preoperative and postoperative serum of 65 HCC patients was conducted via lectin biochip technology. Multivariable logistic regression analysis was used to address associations between serum glycan levels and clinicopathological characteristics. Kaplan-Meier analysis was used to evaluate the impacts of serum glycan levels on overall survival (OS) and progression-free survival (PFS) of the HCC patients. RESULTS: HCC patients presented significantly higher levels of the lectin-specific glycans in preoperative serum than disease-free individuals (p < 0.001 - p = 0.029), except ConA. The glycans in preoperative sera were significantly related to tumor size, pTNM, metastasis, BCLC stage, portal hypertension (PHT), and platelet count (PLT), respectively (p < 0.05). Multivariate logistic analyses indicated that tumor size and pTNM independently impact on glycan-specific lectins either LTL, UEA-I, VVL, NPL, WGA, PNA, MAL-I, SNA, or PHA-L (p = 0.003 - p = 0.044); BCLC stage and PLT were independent factors influencing the serum glycans recognizable DSA (p = 0.024) and SNA (p = 0.050), respectively. Surgical excision of tumor mass significantly reduced glycan levels in sera. Tumor differentiation, albumin, and ABO type significantly revealed independent influence on glycan-specific lectins, such as RCA-I (p = 0.024), VVL (p = 0.024), and Con A (p = 0.026) in the postoperative serum. HCC patients with high levels of VVL-binding glycans significantly benefited from a longer OS time (p = 0.016, HR: 0.460, 95% CI: 0.237-0.892) and a better PFS time (p = 0.004; HR: 0.435, 95% CI: 0.237-0.799), respectively. CONCLUSION: Serum glycans could reflect surgical outcomes in at-risk patients and become valuable biomarkers in evaluating the progression of HCC patients.
Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Progressão da Doença , Neoplasias Hepáticas , Polissacarídeos , Humanos , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Polissacarídeos/sangue , Biomarcadores Tumorais/sangue , Idoso , Período Pré-Operatório , Lectinas/sangue , Adulto , Glicosilação , PrognósticoRESUMO
There is abundant evidence that parasitoids manipulate their hosts by envenomation to support the development and survival of their progeny before oviposition. However, the specific mechanism underlying host nutritional manipulation remains largely unclear. To gain a more comprehensive insight into the effects induced by the gregarious ectoparasitoid Iseropus kuwanae (Hymenoptera: Ichneumonidae) on the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) larvae, we sequenced the transcriptome of both non-envenomed and envenomed G. mellonella larvae, specifically targeting genes related to lipid metabolism. The present study revealed that 202 differentially expressed genes (DEGs) were identified and 9 DEGs were involved in lipid metabolism. The expression levels of these 9 DEGs relied on envenomation and the duration post-envenomation. Further, envenomation by I. kuwanae induced an increase in triglyceride (TG) level in the hemolymph of G. mellonella larvae. Furthermore, silencing GmPLA2 in G. mellonella larvae 24 h post-envenomation significantly decreased the content of 4 unsaturated fatty acids and TG levels in the hemolymph. The content of linoleic acid and α-linoleic acid were significantly decreased and the content of oleic acid was significantly increased by exogenous supplement of arachidonic acid. Meanwhile, the reduction in host lipid levels impairs the growth and development of wasp offspring. The present study provides valuable knowledge about the molecular mechanism of the nutritional interaction between parasitoids and their hosts and sheds light on the coevolution between parasitoids and host insects.
RESUMO
OBJECTIVE: To explore the diagnostic value of nanopore sequencing technology for detecting nontuberculous mycobacterial pulmonary disease (NTM-PD) in bronchial alveolar lavage fluid (BALF). METHODS: A retrospective analysis was conducted on 83 patients with suspected NTM-PD admitted to Anhui Chest Hospital from January 2021 to November 2023. All patients underwent bronchoscopic examination, and BALF samples were collected for smear acid-fast staining, mycobacterial culture, and nanopore sequencing. The diagnostic efficiencies of these three methods were compared. RESULTS: Among these patients, 27 were diagnosed with NTM-PD, 43 with pulmonary tuberculosis (PTB), and 13 with other lung diseases (OLD). The sensitivity, specificity, positive and negative predictive value of nanopore sequencing for diagnosing NTM-PD were 88.9%, 87.5%, 77.4%, and 94.2%, respectively. Nanopore sequencing demonstrated significantly higher sensitivity than smear and culture methods. The area under the receiver operating characteristic (ROC) curve (AUC) for nanopore sequencing was 0.882, significantly higher than that of smear (0.547) and culture (0.658), with P values less than 0.05. CONCLUSION: Nanopore sequencing technology has high diagnostic efficiency for NTM-PD and can directly identify bacterial species, but specificity issues should be considered in clinical application.
RESUMO
Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is the most destructive pest, causing severe damage to mulberry production in China's sericulture industry. The insecticide application in mulberry orchards poses a significant risk of poisoning to Bombyx mori. Shifting from insecticides to odor attractants is a beneficial alternative, but not much data is available on the olfactory system of G. pyloalis. We identified 114 chemosensory genes from the antennal transcriptome database of G. pyloalis, with 18 odorant-binding protein (OBP) and 17 chemosensory protein (CSP) genes significantly expressed in the antennae. Ligand-binding assays for two antennae-biased expressed general odorant-binding proteins (GOBPs) showed high binding affinities of GOBP1 to hexadecanal, ß-ionone, and 2-ethylhexyl acrylate, while GOBP2 exhibited binding to 4-tert-octylphenol, benzyl benzoate, ß-ionone, and farnesol. Computational simulations indicated that van der Waal forces predominantly contributed to the binding free energy in the binding processes of complexes. Among them, Phe12 of GOBP1 and Phe19 of GOBP2 were demonstrated to play crucial roles in their bindings to plant volatiles using site-directed mutagenesis experiments. Moreover, hexadecanal and ß-ionone attracted G. pyloalis male moths in the behavioral assays, while none of the candidate plant volatiles significantly affected female moths. Our findings provide a comprehensive understanding of the molecular mechanisms underlying olfactory recognition in G. pyloalis, setting the groundwork for novel mulberry pests control strategies based on insect olfaction.
Assuntos
Proteínas de Insetos , Mariposas , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Mariposas/metabolismo , Mariposas/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Masculino , Feminino , Antenas de Artrópodes/metabolismo , Compostos Orgânicos Voláteis/metabolismoRESUMO
OBJECTIVE: To analyze the isolation rate, prevalence trends, species distribution, and drug sensitivity of non-tuberculous mycobacteria (NTM) in Anhui Province, providing a reference for diagnosis and treatment strategies. METHODS: Specimens from suspected mycobacterial infection patients at Anhui Chest Hospital (including outpatients and inpatients) from January 2021 to December 2023 were cultured. Identified NTM strains were analyzed for species distribution and drug sensitivity. RESULTS: Of 10,519 mycobacteria strains cultured, 1,589 were NTM (15.11%). The top four species were Mycobacterium intracellulare (75.36%), Mycobacterium abscessus (11.78%), Mycobacterium kansasii (7.09%), and Mycobacterium avium (2.85%). NTM strains showed high sensitivity to amikacin and clarithromycin (≥90%) and significant sensitivity to rifabutin, moxifloxacin, and rifampicin (89.03%-79.61%). They exhibited high resistance to imipenem/cilastatin, sulfamethoxazole, minocycline, and doxycycline (≥95%). CONCLUSION: NTM isolation rates in Anhui have remained stable, with the predominant species being M. intracellulare, M. kansasii, M. abscessus, and M. avium. NTM strains are highly sensitive to amikacin, clarithromycin, rifabutin, moxifloxacin, and rifampicin. These findings can guide diagnosis, treatment strategies, and drug selection for NTM disease in Anhui Province.
RESUMO
Polymer-wrapped single-walled carbon nanotubes (SWNTs) are a potential method for obtaining high-purity semiconducting (sc) SWNT solutions. Conjugated polymers (CPs) can selectively sort sc-SWNTs with different chiralities, and the structure of the polymer side chains influences this sorting capability. While extensive research has been conducted on modifying the physical, optical, and electrical properties of CPs through side-chain modifications, the impact of these modifications on the sorting efficiency of sc-SWNTs remains underexplored. This study investigates the introduction of various conjugated side chains into naphthalene diimide-based CPs to create a biaxially extended conjugation pattern. The CP with a branched conjugated side chain (P3) exhibits reduced aggregation, resulting in improved wrapping ability and the formation of larger bundles of high-purity sc-SWNTs. Grazing incidence X-ray diffraction analysis confirms that the potential interaction between sc-SWNTs and CPs occurs through π-π stacking. The field-effect transistor device fabricated with P3/sc-SWNTs demonstrates exceptional performance, with a significantly enhanced hole mobility of 4.72 cm2 V-1 s-1 and high endurance/bias stability. These findings suggest that biaxially extended side-chain modification is a promising strategy for improving the sorting efficiency and performance of sc-SWNTs by using CPs. This achievement can facilitate the development of more efficient and stable electronic devices.
RESUMO
Lung cancer is the main cause of cancer deaths around the world. Nitrosamine 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen of lung cancer. Abundant evidence implicates long noncoding RNAs (lncRNAs) in tumorigenesis. Yet, the effects and mechanisms of lncRNAs in NNK-induced carcinogenesis are still unclear. In this study, we discovered that NNK-induced transformed Beas-2B cells (Beas-2B-NNK) showed increased cell migration and proliferation while decreasing rates of apoptosis. RNA sequencing and differentially expressed lncRNAs analyses showed that lncRNA PSMB8-AS1 was obviously upregulated. Interestingly, silencing the lncRNA PSMB8-AS1 in Beas-2B-NNK cells reduced cell proliferation and migration and produced cell cycle arrest in the G2/M phase along with a decrease in CDK1 expression. Conclusively, our results demonstrate that lncRNA PSMB8-AS1 could promote the malignant characteristics of Beas-2B-NNK cells by regulating CDK1 and affecting the cell cycle, suggesting that it may supply a new prospective epigenetic mechanism for lung cancer.
Assuntos
Brônquios , Carcinógenos , Ciclo Celular , Células Epiteliais , Nicotiana , RNA Longo não Codificante , Humanos , Brônquios/citologia , Brônquios/patologia , Brônquios/efeitos dos fármacos , Carcinógenos/toxicidade , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Nicotiana/química , Nitrosaminas/toxicidade , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Background: Lung adenocarcinoma (LUAD) has a complex tumor heterogeneity. Our research attempts to clearness LUAD subtypes and build a reliable prognostic signature according to the activity changes of the hallmark and immunologic gene sets. Methods: According to The Cancer Genome Atlas (TCGA) - LUAD dataset, changes in marker and immune gene activity were analyzed, followed by identification of prognosis-related differential gene sets (DGSs) and their related LUAD subtypes. Survival analysis, correlation with clinical characteristics, and immune microenvironment assessment for subtypes were performed. Moreover, the differentially expressed genes (DEGs) between different subtypes were identified, followed by the construction of a prognostic risk score (RS) model and nomogram model. The tumor mutation burden (TMB) and tumor immune dysfunction and exclusion (TIDE) of different risk groups were compared. Results: Two LUAD subtypes were determined according to the activity changes of the hallmark and immunologic gene sets. Cluster 2 had worse prognosis, more advanced tumor and clinical stages than cluster 1. Moreover, a prognostic RS signature was established using two LUAD subtype-related DEGs, which could stratify patients at different risk levels. Nomogram model incorporated RS and clinical stage exerted good prognostic performance in LUAD patients. A shorter survival time and higher TMB were observed in the high-risk patients. Conclusions: Our findings revealed that our constructed prognostic signature could exactly predict the survival status of LUAD cases, which was helpful in predicting the prognosis and guiding personalized therapeutic strategies for LUAD.
RESUMO
Bacterial wilt is a significant soil-borne disease that poses a threat to mulberry production yield and quality of agricultural production worldwide. However, the disease resistance mechanisms dependent on root exudates are not well understood. In this present study, we investigated the antibacterial mechanisms of the main active substances (erucamide, oleamide, and camphor bromide) present in mulberry root exudates (MRE) against Ralstonia pseudosolanacearum (Rp), the causal agent of bacterial wilt. Our findings revealed that these three active substances inhibited the growth activity of Rp by affecting the cell morphology and extracellular polysaccharide content, as well as triggering a burst of reactive oxygen species. The active substances induced oxidative stress, leading to a decrease in Rp growth. Additionally, the expression levels of key genes in the hrp gene cluster (hrpB, hrpX, and hrpF) and other virulence-related genes (such as ripAW, ripAE, Rs5-4819, Rs5-4374, ace, egl3, and pehB) were significantly reduced upon treatment with the active substances. Further pathogenicity experiments demonstrated that root exudates (at a concentration of 1.5 mg·mL-1) delayed or slowed down the occurrence of bacterial wilt in mulberry. These findings provide valuable insight into the antimicrobial mechanisms of MRE against Rp and lay a theoretical foundation for the development and application of biocontrol agents to control mulberry bacterial wilt.
RESUMO
Background: With the transformation of China's economy and society, the floating population has also shown a new development trend, from individual migration to co-migration with family members. In 2020, among the 376 million floating population, the population flowing to cities and towns was 330 million, accounting for nearly 88.1%. The family mobility of the floating population is not just a simple personal gathering or geographical migration, but a profound adjustment of the living environment, social interaction and the interests of family members. Migrants no longer simply play the role of " urban passers-by", but gradually move with spouses, children, parents, and even settle in the city, which will inevitably produce different public service and social security needs. Objective: To explore the impact of floating population's familyization on the participation of medical insurance in the inflow areas. Methods: This study adopted the form of non-systematic literature review. The key words were floating population and medical insurance. The related analysis of PubMed, Embase, CNKI, Wanfang, and VIP databases were reviewed and summarized. Results: Due to the flow between domestic immigrants and regions, their medical insurance is difficult to be guaranteed. The domestic floating population's demand for health services is increasing, but the coverage of medical services provided by medical insurance is not comprehensive enough. Conclusion: It is necessary to integrate the medical insurance system and improve the adaptability of medical insurance to family mobility; protect the welfare needs of migrant families and increase their willingness to participate in medical insurance at the destination; pay attention to the interaction and integration of floating population families, understand and guide them to participate in the status quo of medical insurance, and improve the status quo.
RESUMO
Glyphodes pyloalis (Lepidoptera: Pyralidae) is one of the major pests in mulberry production in China, which has developed resistance to various insecticides. Chemoreception is one of the most crucial physiological tactics in insects, playing a pivotal role in recognizing chemical stimuli in the environment, including noxious stimuli such as insecticides. Herein, we obtained recombinant pheromone-binding protein 1 (GpylPBP1) that exhibited antennae-biased expression in G. pyloalis. Ligand-binding assays indicated that GpylPBP1 had the binding affinities to two organophosphorus insecticides, with a higher binding affinity to chlorpyrifos than to phoxim. Computational simulations showed that a mass of nonpolar amino acid residues formed the binding pocket of GpylPBP1 and contributed to the hydrophobic interactions in the bindings of GpylPBP1 to both insecticides. Furthermore, the binding affinities of three GpylPBP1 mutants (F12A, I52A, and F118A) to both insecticides were all significantly reduced compared to those of the GpylPBP1-wild type, suggesting that Phe12, Ile52, and Phe118 residues were crucial binding sites and played crucial roles in the bindings of GpylPBP1 to both insecticides. Our findings can be instrumental in elucidating the effects of insecticides on olfactory recognition in moths and facilitating the development of novel pest management strategies using PBPs as targets based on insect olfaction.
Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/metabolismo , Proteínas de Transporte/metabolismo , Feromônios/metabolismo , Compostos Organofosforados/metabolismo , Mariposas/metabolismo , Proteínas Recombinantes/química , Proteínas de Insetos/metabolismoRESUMO
With the flourishing development of 3D printing technology, the demand for printing materials has been increasing rapidly in recent years. In particular, physical gels formed by cellulose nanocrystals (CNCs) exhibit suitable shear-thinning behavior, high storage moduli, and high yield stresses for extrusion-based printing. While most studies use water as the dispersing medium to form CNC percolated gels, the dispersing behavior of CNCs in alternative solvents, such as deep eutectic solvents (DESs), has not been fully explored. Especially, DESs have low volatility and good ionic conductivity to form functional ionogels. Precise control of the rheological properties and selection of suitable dispersion processes continue to pose significant challenges. In light of this, we have devised a novel dispersion process employing thermal and shear treatments to facilitate the gelation of CNCs within DESs. A crude dispersion of CNCs in the DES underwent thermal treatment to partially remove the surface sulfate ester on CNCs. As a result, the repulsive force between CNCs decreases. A second shear then significantly increases the strength of CNC/DES gels potentially because of the increased rod-rod contacts. This approach enables the formation of high-strength gels at low concentrations of CNCs. Both thermal treatment and a second shear are crucial to forming strong percolated CNC gels. In short, we showed a simple strategy to facilitate the dispersion and gelation of CNCs for direct ink writing.
Assuntos
Celulose , Nanopartículas , Celulose/química , Solventes Eutéticos Profundos , Temperatura , Géis , Nanopartículas/químicaRESUMO
BACKGROUND: DNA methylation is a form of epigenetic modification that impacts gene expression without modifying the DNA sequence, thereby exerting control over gene function and cellular development. The prediction of DNA methylation is vital for understanding and exploring gene regulatory mechanisms. Currently, machine learning algorithms are primarily used for model construction. However, several challenges remain to be addressed, including limited prediction accuracy, constrained generalization capability, and insufficient learning capacity. RESULTS: In response to the aforementioned challenges, this paper leverages the similarities between DNA sequences and time series to introduce a time series-based hybrid ensemble learning model, called Multi2-Con-CAPSO-LSTM. The model utilizes multivariate and multidimensional encoding approach, combining three types of time series encodings with three kinds of genetic feature encodings, resulting in a total of nine types of feature encoding matrices. Convolutional Neural Networks are utilized to extract features from DNA sequences, including temporal, positional, physicochemical, and genetic information, thereby creating a comprehensive feature matrix. The Long Short-Term Memory model is then optimized using the Chaotic Accelerated Particle Swarm Optimization algorithm for predicting DNA methylation. CONCLUSIONS: Through cross-validation experiments conducted on 17 species involving three types of DNA methylation (6 mA, 5hmC, and 4mC), the results demonstrate the robust predictive capabilities of the Multi2-Con-CAPSO-LSTM model in DNA methylation prediction across various types and species. Compared with other benchmark models, the Multi2-Con-CAPSO-LSTM model demonstrates significant advantages in sensitivity, specificity, accuracy, and correlation. The model proposed in this paper provides valuable insights and inspiration across various disciplines, including sequence alignment, genetic evolution, time series analysis, and structure-activity relationships.
Assuntos
Metilação de DNA , Redes Neurais de Computação , Fatores de Tempo , Algoritmos , Aprendizado de MáquinaRESUMO
An artificial light-harvesting system (ALHS) was developed in aqueous solution by employing the electrostatic co-assembly of a tetraphenylethylene derivative modified with two sulfonate groups (TPE-BSBO) and hyperbranched polyethyleneimine (PEI) as the energy donors, and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (DBT) as the energy acceptors. The ALHS exhibits not only high efficiency in energy transfer and conversion but also a significant enhancement in the generation of reactive oxygen species (ROS), especially superoxide anion radicals (O2Ë-), facilitating its utilization in photocatalytic oxidation reactions.
RESUMO
Biological sequence data mining is hot spot in bioinformatics. A biological sequence can be regarded as a set of characters. Time series is similar to biological sequences in terms of both representation and mechanism. Therefore, in the article, biological sequences are represented with time series to obtain biological time sequence (BTS). Hybrid ensemble learning framework (SaPt-CNN-LSTM-AR-EA) for BTS is proposed. Single-sequence and multi-sequence models are respectively constructed with self-adaption pre-training one-dimensional convolutional recurrent neural network and autoregressive fractional integrated moving average fused evolutionary algorithm. In DNA sequence experiments with six viruses, SaPt-CNN-LSTM-AR-EA realized the good overall prediction performance and the prediction accuracy and correlation respectively reached 1.7073 and 0.9186. SaPt-CNN-LSTM-AR-EA was compared with other five benchmark models so as to verify its effectiveness and stability. SaPt-CNN-LSTM-AR-EA increased the average accuracy by about 30%. The framework proposed in this article is significant in biology, biomedicine, and computer science, and can be widely applied in sequence splicing, computational biology, bioinformation, and other fields.
Assuntos
Algoritmos , Aprendizagem , Fatores de Tempo , Sequência de Bases , Aprendizado de MáquinaRESUMO
The development of stimuli-responsive functional fluorescent hydrogels is of great significance for the realization of artificial intelligence. In the present work, we design and synthesize a stimulus-responsive hydrogel embedded with an aggregation-induced emission (AIE) monomer, in which the fluorescence brightness and intensity can be tuned. The hydrogel embedded with tetraphenylethene-grafted-poly[3-sulfopropyl methacrylate potassium salt] (TPE-PSPMA) as the functional element is prepared by the radical polymerization method. Among them, the TPE core exhibits adaptive fluorescence ability through the AIE effect, while the PSPMA chain provides tunable hydrophilic properties under an external stimulus. The effect of different cationic surfactants with different lengths of hydrophobic tails on the fluorescence properties of TPE-PSPMA in solution is systematically investigated. With cationic surfactants, such as cetyltrimethylammonium bromide (CTAB), the fluorescence intensity is gradually tuned from 1059 to 4623. And the fluorescence intensities increase with the growth of hydrophobic tails of surfactants, which results from hydrophobicity-induced electrostatic interactions among surfactants and polymer chains. Furthermore, an obvious tunable fluorescence feature of hydrogel copolymerized TPE-PSPMA is realized, resulting from the change of brightness and the dynamic increase of fluorescence intensity (from 1031 to 3138) for the hydrogel immersed in CTAB solution with different soaking times. Such a typical fluorescence-regulated behavior can be attributed to the AIE of the TPE-PSPMA chain and the electrostatic interaction between the surfactant and the anionic polymer chain. The designed TPE-PSPMA-based hydrogel is responsive to stimuli, inspiring the development of intelligent systems such as soft robots and smart wearables.
RESUMO
The general cutworm, Spodoptera litura (Lepidoptera: Noctuidae) is a worldwide destructive omnivorous pest and the endoparasitoid wasp Meteorus pulchricornis (Hymenoptera: Braconidae) is the dominant endoparasitoid of S. litura larvae. Trehalase is a key enzyme in insect trehalose metabolism and plays an important role in the growth and development of insects. However, the specific function of trehalase in parasitoid and host associations has been less reported. In this study, we obtained two trehalase genes (SlTre1 and SlTre2) from our previously constructed S. litura transcriptome database; they were highly expressed in 3rd instar larvae. SlTre1 was mainly expressed in the midgut, and SlTre2 was expressed highest in the head. SlTre1 and SlTre2 were highly expressed 5 days after parasitization by M. pulchricornis. Treatment with the trehalase inhibitor validamycin A significantly inhibited the expression levels of SlTre1 and SlTre2, and the trehalase activity. Besides, the content of trehalose was increased but the content of glucose was decreased 24 h after validamycin A treatment in parasitized S. litura larvae. In addition, the immune-related genes in phenoloxidase (PO) pathway and fatty acid synthesis-related genes in lipid metabolism were upregulated in parasitized host larvae after validamycin A treatment. Importantly, the emergence rate, proportion of normal adults, and body size of parasitoid offspring was decreased in parasitized S. litura larvae after validamycin A treatment, indicating that validamycin A disrupts the trehalose metabolism of parasitized host and thus reduces the fitness of parasitoid offspring. The present study provides a novel perspective for coordinating the application of biocontrol and antibiotics in agroecosystem.
Assuntos
Trealase , Trealose , Animais , Trealase/genética , Metabolismo dos Carboidratos , LarvaRESUMO
The high cell density, immobilization and stability of biofilms are ideal characteristics for bacteria in resisting antibiotic therapy. CsgD is a transcription activating factor that regulates the synthesis of curly fimbriae and cellulose in Escherichia coli, thereby enhancing bacterial adhesion and promoting biofilm formation. To investigate the role of CsgD in biofilm formation and stress resistance in bacteria, the csgD deletion mutant ΔcsgD was successfully constructed from the engineered strain E. coli BL21(DE3) using the CRISPR/Cas9 gene-editing system. The results demonstrated that the biofilm of ΔcsgD decreased by 70.07% (p < 0.05). Additionally, the mobility and adhesion of ΔcsgD were inhibited due to the decrease in curly fimbriae and extracellular polymeric substances. Furthermore, ΔcsgD exhibited a significantly decreased resistance to acid, alkali and osmotic stress conditions (p < 0.05). RNA-Seq results revealed 491 differentially expressed genes between the parent strain and ΔcsgD, with enrichment primarily observed in metabolism-related processes as well as cell membrane structure and catalytic activity categories. Moreover, CsgD influenced the expression of biofilm and stress response genes pgaA, motB, fimA, fimC, iraP, ompA, osmC, sufE and elaB, indicating that the CsgD participated in the resistance of E. coli by regulating the expression of biofilm and stress response. In brief, the transcription factor CsgD plays a key role in the stress resistance of E. coli, and is a potential target for treating and controlling biofilm.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Transativadores/metabolismo , Regulação Bacteriana da Expressão Gênica , Biofilmes , Proteínas da Membrana Bacteriana Externa/genéticaRESUMO
Glyphodes pyloalis Walker (G. pyloalis) is a common destructive mulberry pest. Due to the long-term and frequent use of insecticides, it has developed tolerance to commonly used insecticides. Tolfenpyrad (TFP) is a novel pyrazole heterocyclic insecticide. In order to understand the TFP detoxification mechanism of G. pyloalis larvae, we first estimated the LC30 dose of TFP for 3rd instar G. pyloalis larvae. Next, we identified genes that were differentially expressed in 3rd instar G. pyloalis larvae treated with TFP compared to the control group by transcriptome sequencing. In total, 86,949,569 and 67,442,028 clean reads were obtained from TFP-treated and control G. pyloalis larvae, respectively. A total of 5588 differentially expressed genes (DEGs) were identified in TFP-treated and control G. pyloalis larvae, of which 3084 genes were upregulated and 2504 genes were downregulated. We analyzed the expression of 43 candidate detoxification enzyme genes associated with insecticide tolerance using qPCR. According to the spatiotemporal expression pattern of DEGs, we found that CYP6ABE1, CYP333A36 and GST-epsilon8 were highly expressed in the midgut, while CarEs14 was strongly expressed in haemolymph. Furthermore, we successfully knocked down these genes by RNA interference. After silencing CYP6ABE1 and CYP333A36, bioassay showed that the mortality rate of TFP-treated G. pyloalis larvae was significantly higher compared to the control group. This study provides a theoretical foundation for understanding the sensitivity of G. pyloalis to TFP and establish the basis for the effective and green management of this pest.
Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Mariposas/metabolismo , Larva/genética , Pirazóis/metabolismoRESUMO
OBJECTIVE: This study aimed to determine whether lipopolysaccharide (LPS) induces the loss of corneal nerve fibers in cultured trigeminal ganglion (TG) cells, and the underlying mechanism of LPS-induced TG neurite damage. METHODS: TG neurons were isolated from C57BL/6 mice, and the cell viability and purity were maintained for up to 7 days. Then, they were treated with LPS (1 µg/mL) or the autophagy regulator (autophibib and rapamycin) alone or in combination for 48 h, and the length of neurites in TG cells was examined by the immunofluorescence staining of the neuron-specific protein ß3-tubulin. Afterwards, the molecular mechanisms by which LPS induces TG neuron damage were explored. RESULTS: The immunofluorescence staining revealed that the average length of neurites in TG cells significantly decreased after LPS treatment. Importantly, LPS induced the impairment of autophagic flux in TG cells, which was evidenced by the increase in the accumulation of LC3 and p62 proteins. The pharmacological inhibition of autophagy by autophinib dramatically reduced the length of TG neurites. However, the rapamycin-induced activation of autophagy significantly lessened the effect of LPS on the degeneration of TG neurites. CONCLUSION: LPS-induced autophagy inhibition contributes to the loss of TG neurites.