Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 10(9): nwad173, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37593113

RESUMO

Somatic cell nuclear transfer (SCNT) can reprogram differentiated somatic cells into totipotency. Although pre-implantation development of SCNT embryos has greatly improved, most SCNT blastocysts are still arrested at the peri-implantation stage, and the underlying mechanism remains elusive. Here, we develop a 3D in vitro culture system for SCNT peri-implantation embryos and discover that persistent Wnt signals block the naïve-to-primed pluripotency transition of epiblasts with aberrant H3K27me3 occupancy, which in turn leads to defects in epiblast transformation events and subsequent implantation failure. Strikingly, manipulating Wnt signals can attenuate the pluripotency transition and H3K27me3 deposition defects in epiblasts and achieve up to a 9-fold increase in cloning efficiency. Finally, single-cell RNA-seq analysis reveals that Wnt inhibition markedly enhances the lineage developmental trajectories of SCNT blastocysts during peri-implantation development. Overall, these findings reveal diminished potentials of SCNT blastocysts for lineage specification and validate a critical peri-implantation barrier for SCNT embryos.

2.
Environ Sci Pollut Res Int ; 30(33): 80741-80757, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37303014

RESUMO

At the 75th United Nations General Assembly, China formally proposed the goals of achieving carbon peak by 2030 and carbon neutrality by 2060, which is referred to as the "double carbon" strategic goal. And energy revolution is the key to achieve this goal. More and more energy enterprises seek to promote the "double carbon" goal through the digital platformization. However, the mechanism of digital platformization promoting the realization of "double carbon" goal is still unclear. Based on the perspective of platform ecosystem and organization structure, this paper deeply analyzes the key intermediary role of energy production mode change and energy trading mode change in energy transformation. This paper also studies the regulatory effect of policy environment, digital platform characteristics, platform leverage, value chain changes, and the ability of digital technology practice and innovatively puts forward the theoretical model. This model reveals the transmission path and internal mechanism of digital platformization of energy companies to promote the realization of dual-carbon goal. Through the established model, this paper analyzes a case that present the commercial digital platformization process developed by Chinese energy company. Such an innovative process in China context has been developed in order to contribute to achieve "double carbon" goals for the future.


Assuntos
Carbono , Ecossistema , China , Políticas , Poluição do Ar
3.
Protein Cell ; 14(4): 262-278, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37084236

RESUMO

Self-organized blastoids from extended pluripotent stem (EPS) cells possess enormous potential for investigating postimplantation embryo development and related diseases. However, the limited ability of postimplantation development of EPS-blastoids hinders its further application. In this study, single-cell transcriptomic analysis indicated that the "trophectoderm (TE)-like structure" of EPS-blastoids was primarily composed of primitive endoderm (PrE)-related cells instead of TE-related cells. We further identified PrE-like cells in EPS cell culture that contribute to the blastoid formation with TE-like structure. Inhibition of PrE cell differentiation by inhibiting MEK signaling or knockout of Gata6 in EPS cells markedly suppressed EPS-blastoid formation. Furthermore, we demonstrated that blastocyst-like structures reconstituted by combining the EPS-derived bilineage embryo-like structure (BLES) with either tetraploid embryos or tetraploid TE cells could implant normally and develop into live fetuses. In summary, our study reveals that TE improvement is critical for constructing a functional embryo using stem cells in vitro.


Assuntos
Blastocisto , Tetraploidia , Gravidez , Feminino , Animais , Camundongos , Embrião de Mamíferos , Diferenciação Celular , Desenvolvimento Embrionário
4.
Nat Cell Biol ; 24(5): 783-792, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484247

RESUMO

Parental DNA methylation and histone modifications undergo distinct global reprogramming in mammalian pre-implantation embryos, but the landscape of epigenetic crosstalk and its effects on embryogenesis are largely unknown. Here we comprehensively analyse the association between DNA methylation and H3K9me3 reprogramming in mouse pre-implantation embryos and reveal that CpG-rich genomic loci with high H3K9me3 signal and DNA methylation level (CHM) are hotspots of DNA methylation maintenance during pre-implantation embryogenesis. We further profile the allele-specific epigenetic map with unprecedented resolution in gynogenetic and androgenetic embryos, respectively, and identify 1,279 allele-specific CHMs, including 19 known imprinting control regions (ICRs). Our study suggests that 22 ICR-like regions (ICRLRs) may regulate allele-specific transcription similarly to known ICRs, and five of them are confirmed to be important for mouse embryo development. Taken together, our study reveals the widespread existence of allele-specific CHMs and largely extends the scope of allele-specific regulation in mammalian pre-implantation embryos.


Assuntos
Metilação de DNA , Impressão Genômica , Alelos , Animais , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Mamíferos , Camundongos
5.
J Funct Foods ; 77: 104149, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32837538

RESUMO

Rhizoma Polygonati (huangjing in Chinese, ) is a medicine food homology herb used as a component of traditional Chinese medicine treating COVID-19 in the current pandemic emergency in China but the mechanisms remain elusive. Here using TCMSP and Swiss Target Prediction databases to sort out the potential targets of the main chemical components and GenCLiP3, NCBI, and GeneCard databases to search for COVID-19 related targets, the chemical compound-target-pathway network was analyzed. Each component was molecularly docked with host cell target angiotensin converting enzyme II, SARS-CoV-2 targets Spike protein, RNA-dependent RNA polymerase, or 3CL hydrolase. Our results showed a higher affinity of the compound diosgenin and (+)-Syringaresinol-O-beta-D-glucoside binding to the three SARS-CoV-2 proteins compared to the other compounds tested. Thus, our data suggest that potential compounds in Rhizoma Polygonati may act on different targets with viral and cancer related signaling and have a great potential in treatment of COVID-19.

7.
Data Brief ; 33: 106475, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33251300

RESUMO

Rhizoma Polygonati (Chinese name as , pinyin as huangjing), as medicine and food homology of Traditional Chinese Medicine, has been recently applied for the complex prescriptions of alternative medicine for treatment of COVID-19 but the mechanisms are largely unclear. Here using public database search and filtering the potential chemical compound based drug targets with COVID-19 targets mapped, the list of data were provided and suggested pharmacokinetic tolerating dose of selected natural compounds were further collected from database. The data provided is the supplementary as a reference showing the intersections of Rhizoma Polygonati druggable targets of lists from current database and potentially related ones targeting COVID-19.

8.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443450

RESUMO

Trichoderma reesei is a biotechnologically important filamentous fungus with the remarkable ability to secrete large amounts of enzymes, whose production is strongly affected by both the carbon and nitrogen sources. While the carbon metabolism regulators are extensively studied, the regulation of enzyme production by the nitrogen metabolism regulators is still poorly understood. In this study, the GATA transcription factor Are1, which is an orthologue of the Aspergillus global nitrogen regulator AREA, was identified and characterized for its functions in regulation of both protease and cellulase production in T. reesei. Deletion of the are1 gene abolished the capability to secrete proteases, and complementation of the are1 gene rescued the ability to produce proteases. Quantitative RT-PCR analysis revealed that the transcripts of protease genes apw1 and apw2 were also significantly reduced in the Δare1 strain when grown in the medium with peptone as the nitrogen source. In addition, deletion of are1 resulted in decreased cellulase production in the presence of (NH4)2SO4. Consistent with the reduction of cellulase production, the transcription levels of the major cellulase genes, including cbh1, cbh2, egl1, and egl2, were dramatically decreased in Δare1. Sequence analysis showed that all promoter regions of the tested protease and cellulase genes contain the consensus GATA elements. However, the expression levels of the major cellulase transcription activator Xyr1 and the repressor Cre1 had no significant difference between Δare1 and the parental strain QM9414, indicating that the regulatory mechanism deserves further investigation. Taken together, these results demonstrate the important role of Are1 in the regulation of protease and cellulase production in T. reesei, although these processes depend on the kind of nitrogen sources. The findings in this study contribute to the understanding of the regulation network of carbon and nitrogen sources in filamentous fungi.


Assuntos
Celulases/genética , Regulação Fúngica da Expressão Gênica , Peptídeo Hidrolases/genética , Esterol O-Aciltransferase/metabolismo , Fatores de Transcrição/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Celulases/metabolismo , Espaço Extracelular , Deleção de Genes , Peptídeo Hidrolases/metabolismo , Fenótipo , Filogenia , Trichoderma/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA