Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Phys Rev Lett ; 132(15): 155103, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682966

RESUMO

Electromagnetic turbulence and ion kinetics in counterstreaming plasmas hold great significance in laboratory astrophysics, such as turbulence field amplification and particle energization. Here, we quantitatively demonstrate for the first time how electromagnetic turbulence affects ion kinetics under achievable laboratory conditions (millimeter-scale interpenetrating plasmas with initial velocity of 2000 km/s, density of 4×10^{19} cm^{-3}, and temperature of 100 eV) utilizing a recently developed high-order implicit particle-in-cell code without scaling transformation. It is found that the electromagnetic turbulence is driven by ion two-stream and filamentation instabilities. For the magnetized scenarios where an applied magnetic field of tens of Tesla is perpendicular to plasma flows, the growth rates of instabilities increase with the strengthening of applied magnetic field, which therefore leads to a significant enhancement of turbulence fields. Under the competition between the stochastic acceleration due to electromagnetic turbulence and collisional thermalization, ion distribution function shows a distinct super-Gaussian shape, and the ion kinetics are manifested in neutron yields and spectra. Our results have well explained the recent unmagnetized experimental observations, and the findings of magnetized scenario can be verified by current astrophysical experiments.

2.
Phys Rev E ; 109(2-2): 025212, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491712

RESUMO

Spectral modulation of high-order harmonics generated in relativistic laser-solid interaction is investigated. Numerical simulations show that the modulation depends on surface plasma density profile, resulting in spectral envelope modulation and regular and irregular harmonic splitting. The mathematical and physical connections between the spectral modulation of high-order harmonics and the temporal modification of attosecond pulse train are explained. Based on these understandings, we propose a possible method to produce isolated attosecond pulses by tailoring surface the plasma profile.

3.
Sci Rep ; 12(1): 16818, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207383

RESUMO

Bright, energetic, and directional electron bunches are generated through efficient energy transfer of relativistic intense (~ 1019 W/cm2), 30 femtosecond, 800 nm high contrast laser pulses to grating targets (500 lines/mm and 1000 lines/mm), under surface plasmon resonance (SPR) conditions. Bi-directional relativistic electron bunches (at 40° and 150°) are observed exiting from the 500 lines/mm grating target at the SPR conditions. The surface plasmon excited grating target enhances the electron flux and temperature by factor of 6.0 and 3.6, respectively, compared to that of the plane substrate. Particle-in-Cell simulations indicate that fast electrons are emitted in different directions at different stages of the laser interaction, which are related to the resultant surface magnetic field evolution. This study suggests that the SPR mechanism can be used to generate multiple, bright, ultrafast relativistic electron bunches for a variety of applications.

4.
Phys Rev Lett ; 128(24): 244801, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776476

RESUMO

The efficiency of high-order harmonic generation from a relativistic laser interacting with solid targets depends greatly on surface plasma distribution. The usual method of enhancing efficiency involves tuning the plasma scale length carefully by improving the laser contrast. Here, we experimentally demonstrate that efficient harmonics can be achieved directly by compressing large-scale surface plasma via the radiation pressure of a circularly polarized normally incident prepulse. The harmonic generation efficiency obtained by this method is comparable to that obtained with optimized plasma scale length by high-contrast lasers. Our scheme does not rely on high-contrast lasers and is robust and easy to implement. Thus, it may pave a way for the development of intense extreme ultraviolet sources and future applications with high repetition rates.

5.
Phys Rev E ; 104(1-2): 015216, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412274

RESUMO

The production of polarized proton beams with multi-GeV energies in ultraintense laser interaction with targets is studied with three-dimensional particle-in-cell simulations. A near-critical density plasma target with prepolarized proton and tritium ions is considered for the proton acceleration. The prepolarized protons are initially accelerated by laser radiation pressure before injection and further acceleration in a bubblelike wakefield. The temporal dynamics of proton polarization is tracked via the Thomas-Bargmann-Michel-Telegdi equation and it is found that the proton polarization state can be altered by both the laser field and the magnetic component of the wakefield. The dependence of the proton acceleration and polarization on the ratio of the ion species is determined and it is found that the protons can be efficiently accelerated as long as their relative fraction is less than 20%, in which case the bubble size is large enough for the protons to obtain sufficient energy to overcome the bubble injection threshold.

6.
Phys Rev E ; 101(5-1): 051202, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32575343

RESUMO

With the recent realization of kilotesla quasistatic magnetic fields, the interaction of a laser with magnetized solids enters an unexplored new regime. In particular, a circularly polarized (CP) laser pulse may propagate in a highly magnetized plasma of any high density without encountering cutoff reflection in the whistler mode. With this, we propose a scheme for producing uniform warm dense matter (WDM) by direct laser heating with a CP laser irradiating onto the target along the magnetic field. It is shown by particle-in-cell simulations, which include advanced ionization dynamics and collision dynamics, moderately intense right-hand CP laser light at 10^{15}W/cm^{2} can propagate in solid aluminum and heat it efficiently to the 100 eV level within picoseconds. By using two laser pulses irradiating from two sides of a thin solid target, uniform heating to WDM can be achieved. This provides a controllable way to create WDM at different temperatures.

7.
Phys Rev E ; 100(5-1): 053207, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869902

RESUMO

By introducing preplasma truncation to cases with an initial preplasma scale length larger than 0.2λ, the efficiency of high-order harmonics generated from relativistic laser-solid interactions can be enhanced by more than one order of magnitude and the angular spread can be confined into near-diffraction-limited divergence. Numerical simulations show that density truncation results in more compact oscillation of the surface electron sheet and the curvature of the reflection surface for the driving laser is greatly reduced. This leads to an overall improvement in the harmonic beam quality. More importantly, density truncation makes the harmonic generation weakly dependent on the preplasma scale length, which provides a way to relax the extremely high requirement on the temporal contrast of the driving laser pulse. A feasible scheme to realize the required preplasma truncation is also proposed and demonstrated by numerical simulations.

8.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180182, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230572

RESUMO

The 'Trojan Horse' underdense plasma photocathode scheme applied to electron beam-driven plasma wakefield acceleration has opened up a path which promises high controllability and tunability and to reach extremely good quality as regards emittance and five-dimensional beam brightness. This combination has the potential to improve the state-of-the-art in accelerator technology significantly. In this paper, we review the basic concepts of the Trojan Horse scheme and present advanced methods for tailoring both the injector laser pulses and the witness electron bunches and combine them with the Trojan Horse scheme. These new approaches will further enhance the beam qualities, such as transverse emittance and longitudinal energy spread, and may allow, for the first time, to produce ultrahigh six-dimensional brightness electron bunches, which is a necessary requirement for driving advanced radiation sources. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

9.
Phys Rev Lett ; 120(15): 154801, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756877

RESUMO

Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

10.
Nat Commun ; 8: 15705, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580954

RESUMO

Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m-1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread-an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.

11.
Sci Rep ; 7: 43910, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281679

RESUMO

Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°-60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators.

12.
Phys Rev E ; 95(1-1): 013201, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28208417

RESUMO

Generation of intense coherent THz radiation by obliquely incidenting an intense laser pulse on a wire target is studied using particle-in-cell simulation. The laser-accelerated fast electrons are confined and guided along the surface of the wire, which then acts like a current-carrying line antenna and under appropriate conditions can emit electromagnetic radiation in the THz regime. For a driving laser intensity ∼3×10^{18}W/cm^{2} and pulse duration ∼10 fs, a transient current above 10 KA is produced on the wire surface. The emission-cone angle of the resulting ∼0.15 mJ (∼58 GV/m peak electric field) THz radiation is ∼30^{∘}. The conversion efficiency of laser-to-THz energy is ∼0.75%. A simple analytical model that well reproduces the simulated result is presented.

13.
Sci Rep ; 7: 40058, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071764

RESUMO

We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 µm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 µm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

14.
Phys Rev Lett ; 119(4): 044801, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29341749

RESUMO

Self-injection in a laser-plasma wakefield accelerator is usually achieved by increasing the laser intensity until the threshold for injection is exceeded. Alternatively, the velocity of the bubble accelerating structure can be controlled using plasma density ramps, reducing the electron velocity required for injection. We present a model describing self-injection in the short-bunch regime for arbitrary changes in the plasma density. We derive the threshold condition for injection due to a plasma density gradient, which is confirmed using particle-in-cell simulations that demonstrate injection of subfemtosecond bunches. It is shown that the bunch charge, bunch length, and separation of bunches in a bunch train can be controlled by tailoring the plasma density profile.

15.
Phys Rev E ; 96(1-1): 013201, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347155

RESUMO

We investigate how next-generation laser pulses at 10-200PW interact with a solid target in the presence of a relativistically underdense preplasma produced by amplified spontaneous emission (ASE). Laser hole boring and relativistic transparency are strongly restrained due to the generation of electron-positron pairs and γ-ray photons via quantum electrodynamics (QED) processes. A pair plasma with a density above the initial preplasma density is formed, counteracting the electron-free channel produced by hole boring. This pair-dominated plasma can block laser transport and trigger an avalanchelike QED cascade, efficiently transferring the laser energy to the photons. This renders a 1-µm scale-length, underdense preplasma completely opaque to laser pulses at this power level. The QED-induced opacity therefore sets much higher contrast requirements for such a pulse in solid-target experiments than expected by classical plasma physics. Our simulations show, for example, that proton acceleration from the rear of a solid with a preplasma would be strongly impaired.

16.
Phys Rev E ; 94(5-1): 053207, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27967162

RESUMO

A right-hand circularly polarized electromagnetic wave can propagate in a sufficiently magnetized plasma of any density without encountering cutoff in the whistler mode. With the recent realization of tens-kilotesla magnetic fields, laser propagation in highly magnetized high-density plasmas has become of practical interest, especially for heating plasmas to high energy density and igniting fusion targets. In this paper, the whistler regime of laser-plasma interaction is discussed. It is shown by one- and two-dimensional particle-in-cell simulations that moderately intense right-hand circularly polarized laser light can enter and propagate in high-density plasma and heat it efficiently because of the significantly reduced wave length and speed.

17.
Phys Rev E ; 94(3-1): 033206, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739720

RESUMO

Radially polarized intense terahertz (THz) radiation behind a thin foil irradiated by ultrahigh-contrast ultrashort relativistic laser pulse is recorded by a single-shot THz time-domain spectroscopy system. As the thickness of the target is reduced from 30 to 2 µm, the duration of the THz emission increases from 5 to over 20 ps and the radiation energy increases dramatically, reaching ∼10.5mJ per pulse, corresponding to a laser-to-THz radiation energy conversion efficiency of 1.7%. The efficient THz emission can be attributed to reflection (deceleration and acceleration) of the laser-driven hot electrons by the target-rear sheath electric field. The experimental results are consistent with that of a simple model as well as particle-in-cell simulation.

18.
Phys Rev E ; 93(6): 063204, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415374

RESUMO

Broadband terahertz (THz) radiation with extremely high peak power, generated by the interaction of a femtosecond laser with a thin solid target, has been investigated via particle-in-cell simulations. The spatial (angular) and temporal profiles of the THz radiation reveal that it is caused by the coherent transition radiation emitted when laser-produced hot electrons pass through the front or rear surface of the target. Dependence of the THz radiation on laser and target parameters is studied; it is shown to have a strong correlation with hot electron production. The THz radiation conversion efficiency can be as high as a few times 10^{-3}. This radiation is not only a potentially high power THz source, but may also be used as a unique diagnostic of hot electron generation and transport in relativistic laser-solid interactions.

19.
Phys Rev E ; 93(6-2): 069903, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415401

RESUMO

This corrects the article DOI: 10.1103/PhysRevE.93.063204.

20.
Sci Rep ; 6: 29101, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377126

RESUMO

Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 10(19) photons/s/mm(2)/mrad(2)/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA