Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328053

RESUMO

Cytosolic aggregation of the nuclear protein TDP-43 is associated with many neurodegenerative diseases, but the triggers for TDP-43 aggregation are still debated. Here, we demonstrate that TDP-43 aggregation requires a double event. One is up-concentration in stress granules beyond a threshold, and the other is oxidative stress. These two events collectively induce intra-condensate demixing, giving rise to a dynamic TDP-43 enriched phase within stress granules, which subsequently transitions into pathological aggregates. Mechanistically, intra-condensate demixing is triggered by local unfolding of the RRM1 domain for intermolecular disulfide bond formation and by increased hydrophobic patch interactions in the C-terminal domain. By engineering TDP-43 variants resistant to intra-condensate demixing, we successfully eliminate pathological TDP-43 aggregates in cells. We conclude that up-concentration inside condensates and simultaneous exposure to environmental stress could be a general pathway for protein aggregation, with intra-condensate demixing constituting a key intermediate step.

2.
Nat Commun ; 15(1): 486, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212334

RESUMO

The transactive response DNA-binding protein-43 (TDP-43) is a multi-facet protein involved in phase separation, RNA-binding, and alternative splicing. In the context of neurodegenerative diseases, abnormal aggregation of TDP-43 has been linked to amyotrophic lateral sclerosis and frontotemporal lobar degeneration through the aggregation of its C-terminal domain. Here, we report a cryo-electron microscopy (cryo-EM)-based structural characterization of TDP-43 fibrils obtained from the full-length protein. We find that the fibrils are polymorphic and contain three different amyloid structures. The structures differ in the number and relative orientation of the protofilaments, although they share a similar fold containing an amyloid key motif. The observed fibril structures differ from previously described conformations of TDP-43 fibrils and help to better understand the structural landscape of the amyloid fibril structures derived from this protein.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Humanos , Amiloide/metabolismo , Microscopia Crioeletrônica , Proteínas Amiloidogênicas , Degeneração Lobar Frontotemporal/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(34): e2305625120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579155

RESUMO

TAR DNA-binding protein 43 (TDP-43) is involved in key processes in RNA metabolism and is frequently implicated in many neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. The prion-like, disordered C-terminal domain (CTD) of TDP-43 is aggregation-prone, can undergo liquid-liquid phase separation (LLPS) in isolation, and is critical for phase separation (PS) of the full-length protein under physiological conditions. While a short conserved helical region (CR, spanning residues 319-341) promotes oligomerization and is essential for LLPS, aromatic residues in the flanking disordered regions (QN-rich, IDR1/2) are also found to play a critical role in PS and aggregation. Compared with other phase-separating proteins, TDP-43 CTD has a notably distinct sequence composition including many aliphatic residues such as methionine and leucine. Aliphatic residues were previously suggested to modulate the apparent viscosity of the resulting phases, but their direct contribution toward CTD phase separation has been relatively ignored. Using multiscale simulations coupled with in vitro saturation concentration (csat) measurements, we identified the importance of aromatic residues while also suggesting an essential role for aliphatic methionine residues in promoting single-chain compaction and LLPS. Surprisingly, NMR experiments showed that transient interactions involving phenylalanine and methionine residues in the disordered flanking regions can directly enhance site-specific, CR-mediated intermolecular association. Overall, our work highlights an underappreciated mode of biomolecular recognition, wherein both transient and site-specific hydrophobic interactions act synergistically to drive the oligomerization and phase separation of a disordered, low-complexity domain.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Domínios Proteicos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Proteínas de Ligação a DNA/metabolismo , Metionina
4.
J Biomol NMR ; 77(3): 121-130, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289306

RESUMO

Amyloid fibrils are large and insoluble protein assemblies composed of a rigid core associated with a cross-ß arrangement rich in ß-sheet structural elements. It has been widely observed in solid-state NMR experiments that semi-rigid protein segments or side chains do not yield easily observable NMR signals at room temperature. The reasons for the missing peaks may be due to the presence of unfavorable dynamics that interfere with NMR experiments, which result in very weak or unobservable NMR signals. Therefore, for amyloid fibrils, semi-rigid and dynamically disordered segments flanking the amyloid core are very challenging to study. Here, we show that high-field dynamic nuclear polarization (DNP), an NMR hyperpolarization technique typically performed at low temperatures, can circumvent this issue because (i) the low-temperature environment (~ 100 K) slows down the protein dynamics to escape unfavorable detection regime, (ii) DNP improves the overall NMR sensitivity including those of flexible side chains, and (iii) efficient cross-effect DNP biradicals (SNAPol-1) optimized for high-field DNP (≥ 18.8 T) are employed to offer high sensitivity and resolution suitable for biomolecular NMR applications. By combining these factors, we have successfully established an impressive enhancement factor of ε ~ 50 on amyloid fibrils using an 18.8 T/ 800 MHz magnet. We have compared the DNP efficiencies of M-TinyPol, NATriPol-3, and SNAPol-1 biradicals on amyloid fibrils. We found that SNAPol-1 (with ε ~ 50) outperformed the other two radicals. The MAS DNP experiments revealed signals of flexible side chains previously inaccessible at conventional room-temperature experiments. These results demonstrate the potential of MAS-DNP NMR as a valuable tool for structural investigations of amyloid fibrils, particularly for side chains and dynamically disordered segments otherwise hidden at room temperature.


Assuntos
Amiloide , Imageamento por Ressonância Magnética , Amiloide/química , Ressonância Magnética Nuclear Biomolecular/métodos , Espectroscopia de Ressonância Magnética/métodos , Proteínas Amiloidogênicas
5.
Front Mol Biosci ; 10: 1148302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065450

RESUMO

Aberrant aggregation of the transactive response DNA-binding protein (TDP-43) is associated with several lethal neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. Cytoplasmic neuronal inclusions of TDP-43 are enriched in various fragments of the low-complexity C-terminal domain and are associated with different neurotoxicity. Here we dissect the structural basis of TDP-43 polymorphism using magic-angle spinning solid-state NMR spectroscopy in combination with electron microscopy and Fourier-transform infrared spectroscopy. We demonstrate that various low-complexity C-terminal fragments, namely TDP-13 (TDP-43300-414), TDP-11 (TDP-43300-399), and TDP-10 (TDP-43314-414), adopt distinct polymorphic structures in their amyloid fibrillar state. Our work demonstrates that the removal of less than 10% of the low-complexity sequence at N- and C-termini generates amyloid fibrils with comparable macroscopic features but different local structural arrangement. It highlights that the assembly mechanism of TDP-43, in addition to the aggregation of the hydrophobic region, is also driven by complex interactions involving low-complexity aggregation-prone segments that are a potential source of structural polymorphism.

6.
Environ Res ; 222: 115327, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693462

RESUMO

We present a simplified status description of the prevalence and occurrences of organic micropollutants including endocrine disruptive chemicals (EDCs), therapeutic drugs, hormones, fragrances and ultraviolet (UV) filters in the wastewaters and the adjacent coastal oceans in the Northern and Southern Antarctica. Different treatment technologies adopted in the research stations and their efficacy in removing pharmaceuticals and personal care products (PPCPs) are reviewed. Till date, 56 PPCPs are reported in the wastewaters of Antarctic research stations, and 23 in the adjacent coastal waters and sea ice. The reported concentrations in the wastewaters are at the levels of µg L-1 for UV filters, plasticizer Bisphenol A, metabolites, antibiotics, alkyl phenolic compounds, and stimulants. Concentrations in the coastal waters and sea ice are two orders of magnitude lower than the wastewaters because of dilution and degradation. It is apparent however, that the PPCP-laden effluents discharged from the research stations contaminate them. If left unchecked, pollution of the coastal waters and sea-ice can lead to toxic levels. Through this review, we have established widespread occurrence of PPCPs in the polar coastal oceans; this study will also provide the status quo for the researchers and policymakers to seriously consider the issue and initiate remedial action in the near future. The existing substantial gaps in understanding of the impact of PPCPs on the flora and fauna of Antarctica, and the ineffectiveness of the current treatment technologies adopted by the research stations are highly evident. Future-oriented polar research should focus on protecting the pristine ecosystem by utilizing climate-sensitive, cost-effective treatment technologies.


Assuntos
Cosméticos , Poluentes Químicos da Água , Águas Residuárias , Regiões Antárticas , Odorantes , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Hormônios , Preparações Farmacêuticas
7.
Commun Biol ; 5(1): 1202, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352173

RESUMO

Structural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.


Assuntos
Amiloide , Príons , Amiloide/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Amiloidogênicas , Imageamento por Ressonância Magnética
8.
Front Mol Neurosci ; 14: 670513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276304

RESUMO

Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.

9.
FEBS J ; 287(12): 2449-2467, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31782904

RESUMO

The TAR DNA-binding protein (TDP-43) self-assembles into prion-like aggregates considered to be the structural hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. Here, we use a combination of electron microscopy, X-ray fiber diffraction, Fourier-transform infrared spectroscopy analysis, and solid-state NMR spectroscopy to investigate the molecular organization of different TDP constructs, namely the full-length TDP-43 (1-414), two C-terminal fragments [TDP-35 (90-414) and TDP-16 (267-414)], and a C-terminal truncated fragment (TDP-43 ∆GaroS2), in their fibrillar state. Although the different protein constructs exhibit similar fibril morphology and a typical cross-ß signature by X-ray diffraction, solid-state NMR indicates that TDP-43 and TDP-35 share the same polymorphic molecular structure, while TDP-16 encompasses a well-ordered amyloid core. We identified several residues in the so-called C-terminal GaroS2 (368-414) domain that participates in the rigid core of TDP-16 fibrils, underlining its importance during the aggregation process. Our findings demonstrate that C-terminal fragments can adopt a different molecular conformation in isolation or in the context of the full-length assembly, suggesting that the N-terminal domain and RRM domains play an important role in the TDP-43 amyloid transition.


Assuntos
Amiloide/química , Proteínas de Ligação a DNA/química , Agregados Proteicos , Proteínas de Ligação a DNA/isolamento & purificação , Humanos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
10.
FASEB J ; 33(11): 12146-12163, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31370706

RESUMO

The formation of biofilms provides structural and adaptive bacterial response to the environment. In Bacillus species, the biofilm extracellular matrix is composed of exopolysaccharides, hydrophobins, and several functional amyloid proteins. We report, using multiscale approaches such as solid-state NMR (SSNMR), electron microscopy, X-ray diffraction, dynamic light scattering, attenuated total reflection Fourier transform infrared (FTIR), and immune-gold labeling, the molecular architecture of B. subtilis and pathogenic B. cereus functional amyloids. SSNMR data reveal that the major amyloid component TasA in its fibrillar amyloid form contain ß-sheet and α-helical secondary structure, suggesting a nontypical amyloid architecture in B. subtilis. Proteinase K digestion experiments indicate the amyloid moiety is ∼100 aa long, and subsequent SSNMR and FTIR signatures for B. subtilis and B. cereus TasA filaments highlight a conserved amyloid fold, albeit with substantial differences in structural polymorphism and secondary structure composition. Structural analysis and coassembly data on the accessory protein TapA in B. subtilis and its counterpart camelysin in B. cereus reveal a catalyzing effect between the functional amyloid proteins and a common structural architecture, suggesting a coassembly in the context of biofilm formation. Our findings highlight nontypical amyloid behavior of these bacterial functional amyloids, underlining structural variations between biofilms even in closely related bacterial species.-El Mammeri, N., Hierrezuelo, J., Tolchard, J., Cámara-Almirón, J., Caro-Astorga, J., Álvarez-Mena, A., Dutour, A., Berbon, M., Shenoy, J., Morvan, E., Grélard, A., Kauffmann, B., Lecomte, S., de Vicente, A., Habenstein, B., Romero, D., Loquet, A. Molecular architecture of bacterial amyloids in Bacillus biofilms.


Assuntos
Proteínas Amiloidogênicas/química , Bacillus/fisiologia , Proteínas de Bactérias/química , Biofilmes , Espectroscopia de Ressonância Magnética , Metaloproteases/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA